IT Development Division A I I I :X

Trading Systems Development Department Athens Stock Exchange

7 MARKET
DATA FEED

OASIS MDFS Specification

Version: 2.2

Revision History

Version Date Description

1.0 2025/02/24 | Multicast release.

2.0 2025/06/16 | TCP & APA release.

1. Updated section “4.10. Decoding Example”, field “268 = NoMDEntries”
changed from mandatory to optional.

2. Updated sections “1. Introduction” & “2. Architecture Overview” to reflect
the new TCP/IP functionality.

3. Added comparison of UDP Multicast and TCP/IP services in section 2.
Architecture Overview”.

4. Removed section “3. Connection Procedure & Data Flow”, moved part

5. Added section “3. General Guidelines” which includes parts of the now
removed “3. Connection Procedure & Data Flow” section.

6. Added Section “4. TCP/IP Service”.

7. Added Section “5. UDP Multicast Service” which contains parts of the now
removed “3. Connection Procedure & Data Flow” section.

8. Added note in section “6. FAST Message Encoding”.

9. Updated section “9.1 Comparison With Legacy IDS Service (IOCP)".

10. Added section “6.1 Template Versioning”.

11. Added section “6.12 Partial Decoding”.

12. Renamed section “8. Instrument Prices Handling” to “8. Market Data
Guidelines”.

13. Added sections “8.3. Bond Volumes” and “8.4. APA OTC Trade Reports”.

14. Updated section “7.1.2. Top of Book/Price Depth Book” for Market/ATO/OTC
prices handling.

15. Updated language throughout the document for clarity/uniformity.

2.1 2025/09/16 Updated section “4. TCP/IP Service”.

2.1.1 | 2025/09/18 Updated section “6.12. Partial Decoding”.

2.2 2025/12/02 Added section “4. Recovery Procedure”.

Added section “3.7. Identifying Duplicate Messages”.
Updated section “6.1. Handling Data Feeds on Sources A & B".
Updated section “7.12. Partial Decoding”.

Added section “9.5. MiFID Il / MiFIR Review”.

Ve WN P R

Page 2 of 74

Table of Contents

AV (o] o I o [(o] VOO P P PP PP UPPPPPPPPPRNE 2
TADIE OF CONTENTS ...ttt ettt e st e st e e bt e e st e e e be e e s ab e e sabeeesabeesabeeeaneeesabeeesnseesabeesnenesabeeesneas 3
LI Lo 1Tl X T T TSRS 7
[Ta 1A ge o [ot i Te] o DRSO PSSP PO URUROPPOPPO 8
ATCRITECTUINE OVEIVIBW. . .eiiiiiieiie ettt ettt ettt et e st e e bt e e s ab e e s be e e sabeesabee e beeesabeeesaseesabeesneeesareeenareenns 9
2.1. Incremental FEE APPrOaCh.......oi it e e e s e e s st e e s s abe e e s e sabeee e e nareeas 10
2.2. Y Y g A D F=) 2= [G Lo 18] PR 10
2.3. UDP MUKICAST SEIVICE ...ttt ettt ettt sae e st sttt e b e b e s bt e saee et e et e enbeesbeesaeesanenas 13
2.4. TOP/IP SEIVICE ceeeieeeeeeeeee et ettt e et e e e e e ettt eeeeeseaas bt eteeeesssaassaaateeesssssanssaeeeeesssasasssesseeeesssasasresseeeesssnnnn 13
GENEIAl GUIAEIINES ..ttt ettt ettt e st e it e e s bt e sbeeesabeesabteesbeesabeeesabeesnbeesaseeesabeeanns 14
3.1. Handling Incremental & Snapshot TraffiC......ccuuiieiiiiiiie e 14
3.2. FiN Yol [or=TuToT g NY=To [UL=] o Tolcl @] o i o] S 14
3.3. HEAITDEAT IMIESSAEES ..eiiiviiieeeiiiee ettt e ettt e e et e e e ettt e e e e bt e e e e e ateeeeeastaeeeaastaeeeannbeeesenbaeeeeanseeeeennsenas 14
3.4. DLy =Tol A1 = - | o L PP PP PTPPPPPPTN 15
3.5. YA F=T 1] 1o A 087l =P PPPUPPPRR 15
3.6. Updating the Order BOOK.......c.uuiiiiiiiieiciiiie ettt ettt e e et e e e st e e e saaba e e e s abaeeesnbaeeeesnseeeeennseeas 16
3.7. Identifying DUPIICAtE MESSAZESuvvieeeiiiieeeiieee e et e e e ettt e e e e tre e e e et e e e e e tteeeeesseeeeesbaeesesbaeeeenseeeeennsenas 16
SYSTEM RECOVEINY PrOCEAUIE ... uiiiiie ittt e e e e e e e et e e e e e e e eeeasabeaaeeeeesesansstaaneaeessanssrennneens 17
4.1. IdeNtifying ROIHDACKS ...cc.evviieiciiee et e et e e e st be e e e st ae e s eabeeeeesnbeeeeenaseeas 17
4.2. o Yo I e =3 20] |1 o =T PP PR 17
4.3. Handling MUItiple ROIDACKS.ccii ettt e et e e e et e e e e abe e e e enbaeeeeeabeeeeeenseeas 19
TP 1P SBIVICE ceeeeeei ittt teee et ettt et e e s e e e e eeteeessseaaasareeaeeesssaaasaaeeaeeesssaaassaaeeeeeessssanssseseeesssssassesaeesesssesannrsnns 20
5.1. (oY <o o T ad ¢ Yol Te [o TR 20
5.2. UPdating the PaSSWOIdccoccuiiiiiiiiieecciiee ettt ettt e e e ae e e s st e e e s sbae e e s abaeeeeabaeeeesnseeeesnnseeas 21
5.3. SENAING @ REGUEST ...ceiiieieiiiee ettt ettt ettt e et e e e et e e e e st te e e e sbteeeeebeeeeseabteeesanseaeessssaeeesastaeassnssneassses 21
5.3.1. Request ACKNOWIEAZEMENTciiiiiiiecee e s e s e e s s abee e s sabeeas 22
5.3.2 Request Rejection (Session-Level validation €rror).........coeeeceeeecee e 23
5.3.3. M ESSAEE ENCOTING ...viiiiiiiiiieiiiie ettt s e e st e e s st e e e s sab bt e e s sbbeeesesbeeessnabaeessnasenas 23
5.4. FAST Encoded Message ENCapsUlIationooccuiiiiiiiiiii ettt s e st e e vae e e e e e e 23
5.5. Y] oI ol g1 o Tl Y=o [U LT PPN 24
5.6. 8T UT o R ol] o TN 2T [L= SRR 24

Page 3 of 74

5.7. REtranSMISSION REGUEST s s s e s e s e e e s e s e e e e e e e s e e e e e e e s eeeseseeeasasasasnsnanenennas 25

5.7.1. Retransmission REQUEST REPOITuuuuuiiiiiiiiii e aaaeaaaaaaaeaees 25
5.8. Y0 F=T] o A Y=Y TU =T AP PPPTUPPRN 25
5.8.1. SNAPShOT REQUESE REPOIT...uiiiiiiiiie ettt e e e st e e s sbee e e s sbaeeessanraeeesanes 26
5.9. DiscoONNECEING frOM the SEIVICE ..cc.uuviiieciie e e e e e e e e abe e e e e abae e e e nbeee e e naneeas 26
5.10. HeEartheat IMESSAEES ..occccuviiieiiiiee e et e e ettt ettt e e e tae e e e st e e e et te e e e e abaeeesastaeesanasaeeeansteeeeensaeesennseeeeennsenas 26
5.11. Differentiating Between Incremental / Snapshots / Retransmissions..........cocveeeeeeecreeeeeecesveeeereeesnenen 27
5.12. Initial CoONNECLION PrOCEAUIEcoiuiiiiieeie ettt ettt e st e e st e sbe e s sabeesneeesaree s 27
LT I T 2 (=T olo VLT VA o o ol =T o U o TS PR 29
5.14. TCP/IP SEIVICE EXAMPIES ..ocuvvieerieietiee ettt ettt eetee et ette e et e eetteeeteeeetaeeeebeseetseesateeeabesesnbeseesseesaseesseeesaseean 30
5.14.1. Initial Connection Procedure using TCP/IP SN@PSNOt........ccvecieeeiiiiiiiiecciee ettt 30
5.14.2. Initial Connection Procedure using TCP/IP RetransmiSSiONcceevueevieeireeseeeireenieesteesseessnesneens 32
5.14.3. Different HEartbeat TYPES. .uoi ittt s e e e st e e e st e e e e s sbee e e ssbaeeeennreeas 33
5.14.4. Multiple Market Data Groups via a Single FIX SESSION.......cccciiiiiiiiiiie et 34
5.14.5. Multiple Traffic Types via a Single FIX SESSIONcc.vviiieiiiieeeciee et e e e e 34
UDP IMUILICEST SEIVICE ..ttt ettt st ettt b e b e s h et st e e b e et e e s be e saeesatesabeeabeebee bt e sbeesaneeneean 35
6.1. Handling Data Feeds 0N SOUICES A & B.......cocciiiiiiiiiieceiiieeeesitee e ssiee e sree e sae e e s s abee e s s sabeee s s snseeeessareeas 35
6.2. Handling Gaps in Message SEqUEeNCe NUMDEIS.........coiiiiiieiiiiiiee ettt e e sbre e e 36
6.3. Differentiating Between Incremental / Snapshots / RetransmisSiONS.........cccveeevveeeeereeiveeeereeesveeeereeenns 36
6.4. Initial CoONNECLION PrOCEAUIE ...ttt st sttt e s b e saeesare e 37
6.5. RECOVEIY PrOCEAUIE .. eiiiiee ettt ettt e e e e e et e e e e e e e et e e e e e e e e e e anbtaeeeeeeesasassstsenaaeeseesannstannaaeeesanns 39
6.6. MURICAST SEIVICE EXAMPIES....uiiiiiiiiiie ettt ettt e et e e e e e e st e e e saba e e e sabaeeesnbaeeeesnseeeeennseeas 41
6.6.1. Initial Connection Procedure using UDP Multicast SNapshotcccccevveciieiiiciiee e, 41
6.6.2. Initial Connection Procedure using TCP/IP SNapShoOt......cccvviieciiecieeiieriee et sie e 42
6.6.3. Initial Connection Procedure using TCP/IP RetransmiSSioNcccvieeveeeeveeecteeeeieeeereeeereeeeree e 44
Y I\ oI Y oS o Tole o [1oV 45
7.1. TeMPIAtE VEISIONING .eeiiiiiie ettt e e et e e e e e e e ba e e e esaataeeesabaeeeannbeeeeesbeeesansseeeesnasenas 46
7.2. PACKET STIUCTUIE ...ttt ettt et et s e st st st e bt et esbe e smeesaeesaseebeenbeesneennnenas 47
7.3. (D1 T R/ ¢ 1= 47
7.4. Templates & IMPlICIt TABEING.....uuuiiii i e e e e e e e e e e e e e ab e e e e e e e e s eesnnsraeeeeeaeeenns 48
7.5. Mandatory and OptionNal FIElASueeeiiiiiiiciiee e sae e e e e e e e s aba e e e e abe e e e e eareeas 48
7.6. 1] (o IO T =T - o] YRR 48
7.7. PresenCE Map (PIVIAP) ...ttt e ettt e e e ettt e e ettt e e e e e ate e e e aabaeesensbaeesansbesesensaseeeanseeeeeansenas 49

Page 4 of 74

7.8. Y o] oI =l = g ol Yo [T o =PSRN 49

7.9. 2 o T YV =g Too e [T oYU 49
7.10. DECOUING OVEIVIEW ...eeiiiieiiiiiiiiieeeeiiieeeeeiteeessteeeessuteeeesssteeesassaaeesassaeesassaeesassseeesssssenesssnsenessssenesenssenes 49
% O B 7T oo o [1Y =38 oY Y] L= PSPPI 50
N - Y 4= D 1Yol Yo I o~ PSSR 51
(0] g0 [<Ta = ToTo) q x F=1aTo |17V -S5SSRt 52
8.1. Market/StOP/ATO/ATC OFURIS ..cccveeeeeeeeeeree ettt ettt eeteeeeteeeeteeeeaeeeeteeeeteeeebeeessseessseesnsesessseesteseaseeessenenes 53
8.1.1. Order DEPLh BOOKcviiiiiiiee ettt e e s st e e e st e e e s sbeae e e snteeeesanraeeenanes 53
8.1.2. Top of BOOK/Price DEPth BOOK......cccuieiiieiiieiiii ettt ettt ettt e ae s re e beebe e taesaaesaaeens 53
8.2. 300 o] V= To o PR 53
8.3. B o] o X o) = To o PSSP 54
8.3.1. New — Addition t0 an €MPLY SIEiiiiiiee e e ee e s e e s 54
8.3.2. Change — Change of volume / N0. Of OFders..........ccviiiiiiiiiciieeeceecee ettt 55
8.3.3. Delete — A side DECOMES EMPLY .ocuiiiiiiiee e e s aree e e s abee e e s naeeas 56
8.4. PriCE DEPLN BOOK. ... uiiiiiiiiie ettt et e e et e e e et e e e e atb e e e e eatbaeeeennbaeesestaeeeenbeeeeennrenas 57
8.4.1. New — Level insertion at the bottom of the BOOK..........cooiiriiriiiiiieeeeee e 57
8.4.2. New — Level insertion, causing @ Shiftcoociiiiiiiiii e 58
8.4.3. New — Level insertion, causing the deletion of the last level.......ccuueviviieiiicieiccce e, 59
8.4.4. Change — Change of a level’s volume / N0o. Of OFders.........ccvvveieerieniesie e 60
8.4.5. Delete — Level deletion from the bottom of the bookccooiiiiiiiiiii, 61
8.4.6. Delete — Level deletion, causing @ shift.........cccueiieiiiiicciie e e e 62
8.5. (@0 LT D I=Y o o T oo | QPSPPI 63
8.5.1. New — Entry Insertion at the bottom of the bOOK.........ccuevieiiiiiiii e, 63
8.5.2. New — Entry insertion, causing @ Shift.......ccccuiiiiiiicie e 64
8.5.3. Change — Change of an entry’s VOIUME.......coouiiiiiiieie ettt saee e s ree e 65
8.5.4. Delete — Entry deletion from the bottom of the booK..........cccveiiviiiiiiiii e, 66
8.5.5. Delete — Entry deletion, causing @ Shift.........ccceiiiiiiiiiiiiie e 67
8.6. Order BOOKS iN SNAPSNOLSuviiiiiiiee ittt ettt e e et e e e s bte e e e sbaeeeesabaaeessstaeeesseaeassnnes 68
Market Data GUIEINES.........eiiiiieieee et e st ae e s e s b e e e sar e e sareesaneeesareeenees 69
9.1. [Fo 10T LT Y=g AN U o1 4 To I ol Y- USSP 69
9.2. (o Yo o= @ [T [o= ol o ol PP 70
9.3. BONG VOIUMES ..ttt ettt s e sttt b et e s b e sae e saeesaeeebe e beesneesanenas 70
9.4. F AN N O B O - To [l =T To o £ PEUPROE 70

Page 5 of 74

9.5. MIFID 1/ IMIFIR REVIEWciuiiiiiiiiieieteiteit ettt sttt s sa bbb sneas 71

10. F YT 1= o Yo [NPT 72
10.1. Comparison With Legacy IDS Service (IOCP).......cccuieiiiieeiieecieeecee e steeecteeesaeesteeeseaeeseeeessaeesnsessnraeesnns 72
10.2. FAST Template XIML EXAmMPIE......uveiiiiiiiieeiiieeeeeittee sttt ee sttt e e et e e s sbee e e e sbte e e s sbeaeessaseeeessseaeessnssneessnnns 74

Page 6 of 74

Table of Figures

FIUre 1 - ArChItECTUINE OVEIVIEWeviiiiiiiiiee ettt ettt ettt e e st e e s st e e s sbee e e s sabeeeessabaeeessabteeessssaaessastaeessnssaeessnns 9
=V A [Tol =T o [T Y | I T o U o LSS 10
=V R Y o o1 a o) A C ¢ o YU o LTSRS 11
Figure 4 - INSTrumMeENnt TYPE GrOUPINES.....uuueiiieieieieiiititeee e e e ettt ee e e e e s s sesrteeeeeeeesabbbteeeeesessansssraaaeessessanssssaaeeesesnnns 11
FIBUIE 5 - IMESSaBES POI GrOUP LY P i iiiiiiiiiiieiee eeeeaeaeaeaeas 12
Figure 6 - Handling ROIIDACKS EXAMPIEuiiiiiiiiiieciiie sttt e e e st e e s s e e e st e e e s sabeeeesnnbeeessnnrenas 18
Figure 7 - Handling Multiple RolIbacks EXAMPIEviiiiiiiiee ettt vee e e et e e e e ata e e e e nreeas 19
Figure 8 - Initial Connection Procedure using TCP/IP SN@PSNOt........cccuieiiuiiiiiiieiiieectee ettt eeeeeeteeere e e reeevee s 31
Figure 9 - Initial Connection Procedure using TCP/IP RetransmisSionccccceecveecieesieeseesieesresneesreesreesseessnessneens 32
Figure 10 - Different HEarThat TYPES. ..o i ciiee e ettt e ettt e e ettt e e et e e e e sbte e e e et e e e eeatbeeeseataeeeensbeeeeenseeeeennseeeeennrenas 33
Figure 11 - Multiple Market Data Groups via a Single FIX S@SSION......cciiiiiiiiiiiiiecriie et e e 34
Figure 12 - Multiple Traffic Types via @ Single FIX SESSION ...ccccviiiiiiiiiieeiiiee ettt e e s sree e e 34
Figure 13 - SOUICES A & B EXAMPIE.....uii ittt et ec e et e e e et ae e e e e ab e e e s eaateeeseataeeeensbeeeeennseeeeennseneeennrenas 35
Figure 14 - Handling MesSSage SEQUENCE GAPS....uiiicrrreerirreeerirreeesiisreeeessreeeessssessesssseesessssesesssssessssssseesssssessssssseees 36
Figure 15 - Initial Connection Procedure using UDP Multicast SNapshotcccceeeeiiiiiiciiec e, 41
Figure 16 - Initial Connection Procedure using TCP/IP SNaPSNOt........c..cooiviiiiiiiiiiie ettt et 43
Figure 17 - Initial Connection Procedure using TCP/IP RetransmiSSiONccceecveeiveesreeseeseeereeireesreesseesseesseesneens 44
FIgure 18 - FAST PACKET STFUCTUIEviiiieiieeeccieee e ettt e e ettt e e e tte e e et e e e ettt e e e e e ab e e e e eattaeeeenntaeesensbeeeeenseeeesnnseneeennrenas 47
Figure 19 - FAST DECOING EXAMPIE ...eeiiiiiiiieeiiiee ettt stee ettt e e sttt e e ettt e e e s e e e e satbe e e e s abaeeesnsbeeesenbeeeesnnseeessnnsenas 50

Page 7 of 74

1. Introduction

The ATHEX Market Data Feed Service (MDFS) provides real time, trading data feed information for all instruments
traded on the OASIS platform, as well as APA OTC Pre-Trade and Post-Trade reports.

MDFS provides data using the Financial Information eXchange (FIX) Protocol which is a technical specification that
is owned, maintained, and developed through the collaborative efforts of FIX Trading Community. More
specifically the data format follows the FIX 5.0 SP2 specification and the data is encoded according to the FAST 1.2
specification. Some messages, fields, tags and tag values from FIX Extension Packs to the FIX 5.0 SP2 specification
are utilized in MDFS messages.

The FIX protocol is an industry standard used by institutions, market participants and vendors worldwide. It
facilitates the streamlined, open, and adaptable exchange of information between counterparties and is used in
multiple aspects of trading, including the dissemination of market data (such as that served by MDFS).

The FAST encoding method is a binary encoding method for message-oriented data streams that aims to be space
and processing efficient. It reduces the size of a data stream by removing redundant data and serializing of the
remaining data through binary encoding, self-describing field lengths and bit maps indicating the presence or
absence of fields. FAST encoding is widely used by institutions serving market data to reduce the data stream size
and remove unnecessary overhead, allowing for reduced latency and bandwidth consumption.

MDFS delivers market data by implementing an incremental / snapshot message approach that is outlined by the
FIX Trading Community, using either UDP multicast or TCP/IP as the network transport protocol. This approach
enables a rich and performant market data feed with minimal latency.

Throughout this document there are distinct sections for UDP and TCP/IP clients. UDP clients may/should make
use of certain TCP/IP features, for this reason most TCP/IP sections are relevant to all clients.

A brief comparison to the legacy IDS Service (IOCP) can be found in Appendix A.

Page 8 of 74

https://www.fixtrading.org/
https://www.fixtrading.org/standards/fix-5-0-sp-2/
https://www.fixtrading.org/standards/fast/
https://www.fixtrading.org/extension-packs/
https://www.fixtrading.org/standards/fix-5-0-sp-2/

2.

Architecture Overview

MDFS offers both UDP multicast and TCP/IP for the dissemination of market data to clients. Each client can opt to
utilize either service, according to their specific need. Identical content is available via either protocol and all
market data received is interoperable. The main features of each network transfer layer are as follows:

UDP Multicast:

TCP/IP:

Lower latency due to less protocol overhead.

Available via leased line only.

Higher implementation cost due to need for specialized networking infrastructure.
More complex networking configuration.

Guaranteed fairness in transmission.

Possibility of packet loss, although the MDFS ensures data consistency and availability, through using
concurrent Sources (A & B), the Snapshot functionality and the TCP/IP retransmission service.

Data is sent in FAST encoded format.

No need to implement the FIX session protocol, unless the TCP/IP retransmission service is utilized.

Lower implementation cost. No need for specialized networking infrastructure.

Less complex networking configuration.

More resilient to packet loss, as the protocol handles retransmission of lost packets implicitly.
Increased latency due to protocol overhead.

Available via internet or lease lines.

Data is sent in either FIX or FAST encoded format.

Need to implement the FIX session protocol.

The following sections will describe the core concepts of the MDFS, as well as each service in depth.

A 4

/ \ Multicast Client 1

“
Source A .
‘ ~—Multcast
TCP/IP.
MDFS Client 2
Multicast
(h Multicast
Source B
| TCP/IP —p Client 3

Figure 1 - Architecture Overview

Page 9 of 74

2.1. Incremental Feed Approach

The MDFS follows the paradigm of incremental data feed messages, as outlined by the FIX Trading guideline. This
approach relies on an initial/current state of all instruments included in the data feed and subsequent incremental
messages to keep that state up to date throughout the trading session. The Snapshot functionality can be utilized
to receive the current state with minimal processing, or the Retransmission functionality can be utilized to
construct the current state, along with all previous data for the trading session.

By utilizing this paradigm, the MDFS achieves lower bandwidth consumption and uses a minimal number of
instructions to update the instruments’ order books.

2.2. Market Data Groups

The MDFS disseminates market data that organized into different groups, with each group receiving messages
pertaining to specific Venues, Instrument Types, and message types. Each group has an Incremental feed and a
Snapshot feed. The following tables are an example of how these groups are organized:

Venue Inst-;:;ent Group Type Venue Inst;:rr:;ent Group Type
General Incremental General Incremental
Order Depth Incremental Order Depth Incremental
Cash Top of Book Incremental Cash Top of Book Incremental
& Price Depth 5 Incremental & Price Depth 5 Incremental
Index Price Depth 10 Index Price Depth 10
Incremental Incremental
Trades Incremental Trades Incremental
General Incremental General Incremental
Order Depth Incremental Order Depth Incremental
Venue Top of Book Incremental Top of Book Incremental
1 Bonds Price Depth 5 Incremental | Venue 2 Bonds Price Depth 5 Incremental
Price Depth 10 Price Depth 10
Incremental Incremental
Trades Incremental Trades Incremental
General Incremental General Incremental
Order Depth Incremental Order Depth Incremental
Top of Book Incremental Top of Book Incremental
Derivatives Price Depth 5 Incremental Derivatives | Price Depth 5 Incremental
Price Depth 10 Price Depth 10
Incremental Incremental
Trades Incremental Trades Incremental

Figure 2 - Incremental Groups

Page 10 of 74

Venue | Instrument Type Group Type Venue Ins::pr:;ent Group Type
General Snapshots General Snapshots
Order Depth Snapshots Order Depth Snapshots
Cash Cash
& Top of Book Snapshots 2 Top of Book Snapshots
Index Price Depth 5 Snapshots Index Price Depth 5 Snapshots
Price Depth 10 Snapshots Price Depth 10 Snapshots
Trades Snapshots Trades Snapshots
General Snapshots General Snapshots
Order Depth Snapshots Order Depth Snapshots
Venue Top of Book Snapshots Top of Book Snapshots
1 IR Price Depth 5 Snapshots Venue 2 Bonds Price Depth 5 Snapshots
Price Depth 10 Snapshots Price Depth 10 Snapshots
Trades Snapshots Trades Snapshots
General Snapshots General Snapshots
Order Depth Snapshots Order Depth Snapshots
L Top of Book Snapshots N Top of Book Snapshots
Derivatives Price Depth 5 Snapshots Derivatives Price Depth 5 Snapshots
Price Depth 10 Snapshots Price Depth 10 Snapshots
Trades Snapshots Trades Snapshots

Figure 3 - Snapshot Groups

The association of the Instrument Type groupings in the tables above with the value of FIX field “20011=

ATHEXSecurityCategory” can be seen in the following table:

Instrument Type Grouping

Value of FIX Field “20011= ATHEXSecurityCategory”

Cash & Index 0 = Stock / Rights
1=ETF
2 =Warrant

3 = Stock Index

4 = ETF Indicative Net Asset Value (INAV)

Bonds 5 =Bond

Derivatives 6 = Option
7 = Future
8 = Repo

9 = Standard Combination

Figure 4 - Instrument Type Groupings

Page 11 of 74

An overview of the messages sent via each Group type can be seen on the following table:

Group Type Messages
General Security Status
General Snapshots Trading Session Status
News
Index Value
Closing Price

Start of Day Price

High/Low Limit Modification
Instrument Summary
Auction Price

Order Depth Empty Book

Order Depth Snapshots Order Depth Update

Top of Book Empty Book

Top of Book Snapshots Top of Book Update

Price Depth 5 Empty Book

Price Depth 5 Snapshots Price Depth Update (Up to 5 levels)
Price Depth 10 Empty Book

Price Depth 10 Snapshots Price Depth Update (Up to 10 levels)
Trades Trade

Trades Snapshots

Figure 5 - Messages per Group type
The details for all message types are available in the “OASIS MDFS - Message Reference” document.

There may also exist some groups which do not follow the general structure described in the tables above, the
details of which will be made available through other means.

Page 12 of 74

2.3. UDP Multicast Service

Each Market Data Group described in the previous section is served by a multicast group to a specific IP Address
& UDP Port combination. All Incremental multicast groups are transmitted via the UDP port 10000, and all
Snapshot multicast groups are transmitted via the UDP port 20000. Each client connects to multiple feeds that
disseminate information relevant to them.

The MDFS replicates all feeds on two identical Sources (A & B). This is done to combat the inherent unreliability
of the UDP protocol, where the delivery of data packets is not guaranteed resulting in the possibility of lost
packets. Although such events are highly improbable for colocation clients, it is strongly recommended that clients
connect to both Sources at all times for redundancy.

Clients connected to the UDP Multicast Service may/should utilize TCP/IP Service functionalities. For this reason,
most TCP/IP sections in this document are relevant to all clients.

2.4. TCP/IP Service

The TCP/IP Service provides the following options:

1. Subscription to receive real-time data from a group.
2. Request a snapshot from a group.
3. Request for retransmission of a range of messages from a group.

Clients connected to the UDP Multicast Service can also utilize options 2 & 3 (snapshots and retransmission) for
synchronization / recovery reasons.

Page 13 of 74

3. General Guidelines

The following sections cover the general guidelines that should be followed when connecting to either the UDP
Multicast Service or the TCP/IP Service. Sections dedicated to the specifics of each service are also included.

3.1. Handling Incremental & Snapshot Traffic

All messages received via Incremental and Snapshot feeds will contain the field “1180 = ApplID” this field will
contain the group’s name (e.g. XATH_CASH_GENERAL) and the “_INCR” or “_SNAP” suffix respectively.

The “_INCR” or “_SNAP” suffixes can be used to differentiate Incremental and Snapshot traffic.

To associate an Incremental feed with the corresponding Snapshot feed, the last five characters of field “1180 =
ApplID” should be removed, effectively removing “_INCR” or “_SNAP” suffixes.

3.2 Application Sequence Control

The “Application Sequence Control” (ApplSeqCtrl) component is a FIX component (a collection of fields) that
appears in all Market Data messages and Heartbeats, after the header component.

It is comprised of two fields:

e “1180 = ApplID”: Used to identify each group. Is comprised of the group’s name and the “_INCR” or
“_SNAP” suffix (e.g. XATH_CASH_GENERAL_INCR, XATH_CASH_GENERAL_SNAP).
e 1181 = ApplSeqNum”: Sequence number per group. Will always be “0” for heartbeats.

These fields are critical for identifying which group the message belongs to and for detecting gaps in that group.

3.3. Heartbeat Messages

MDFS will transmit a heartbeat message for an incremental group if no data has been sent for 30 seconds as a
keep-alive mechanism. A client will receive a heartbeat for each incremental group they are receiving data for.
Heartbeat messages are not sent for Snapshot groups.

A heartbeat message has field “35 = MsgType” with a value of “0O = Heartbeat” and contains the field “369 =
LastMsgSegNumProcessed”.

The field “369 = LastMsgSegNumProcessed” contains the value of field “1181 = ApplSegNum” of the last message
sent in that group. This is used for detecting possible gaps in received messages.

Page 14 of 74

Avalue of “0” in field “369 = LastMsgSeqNumProcessed” indicates that no messages have been sent for that group
yet.

3.4. Detecting Gaps

It is crucial for a client to detect any gaps in the data received by MDFS, as all information is disseminated using
an incremental approach, thus processing any message without having successfully processed all previous
messages will lead to an incorrect state.

For each group (identified by the value of field “1180 = ApplID”) a gap can be detected in the following ways:

e Two consecutive messages (excluding heartbeats, which are covered below) are received for that group
with non-contiguous values in field “1181 = ApplSeqNum”.

e A heartbeat message is received for a group with a value in field “369 = LastMsgSegNumProcessed” that
is not contiguous with the value of “1181 = ApplSeqNum” of the last non-heartbeat message received for
that group.

If a gap is detected, the client should suspend all processing and initiate one of the available recovery procedures
(covered in their respective sections for the TCP/IP Service and the UDP Multicast Service) in order to synchronize
with MDFS.

3.5. Snapshot Cycles

Every 1 minute a Snapshot Cycle is generated for each group. A Snapshot Cycle is a collection of messages that
contain the current state of the instruments and markets that belong to that group.

For the information contained in a Snapshot Cycle to be valid, the full cycle needs to be processed in sequential
order. Messages from two different Snapshot Cycles should not be used to determine the current state of a group.

Each message in a Snapshot Cycle contains the field “20009 = ATHEXSnapshotindicator”, with possible values of:
“0 = Start of cycle”, “1 = End of cycle” and “2 = Start and end of cycle (applies when the cycle is comprised of a
single message)”.

Each message in a Snapshot Cycle also contains the field “369 = LastMsgSegNumProcessed” which indicates which
incremental message was the last one sent when this cycle was generated. This relates snapshot to incremental
messages, effectively meaning that the cycle contains information up to and including that incremental message.

A Snapshot Cycle is considered “complete” when a message with “20009 = ATHEXSnapshotIndicator” having a
value of “0 = Start of cycle” is received and a message having a value of “1 = End of cycle” is received afterwards,
or if a single message with value “2 = Start and end of cycle (applies when the cycle is comprised of a single
message)” is received. Any messages in between the start and end of the cycle should have contiguous sequence
numbers (field “1181 = ApplSegNum”). If any gap is detected the cycle is unusable and the client need to discard
all messages for that cycle and wait to receive the next cycle when it is transmitted.

Page 15 of 74

3.6. Updating the Order Book

As long as the values of field “1181 = ApplSegNum” in the messages received from the incremental feed are
contiguous, the client should keep processing them and applying them to the corresponding order book.

3.7. Identifying Duplicate Messages

Two messages are considered identical if they have the same value in field “1180 = ApplID”, “1181 =
ApplSegNum” and the same entries in the ATHEXRecoveryGrp repeating group (used for MDFS System
Recovery).

If a client has received two messages that fulfill the criteria mentioned above, they can safely discard one of
them.

Page 16 of 74

4, System Recovery Procedure

Under certain circumstances the MDFS may enter a recovery mode, rolling back to a previous state. This may be
caused by a critical malfunction in the MDFS or elsewhere in the OASIS platform. In the event of this happening,
the client must be able to identify that the rollback in market data took place and handle it gracefully. The
following sections cover the MDFS’ recovery mechanism and include instructions for market data recipients on
how to handle this scenario.

4.1. Identifying Rollbacks

After a system recovery takes place, all subsequent incremental and heartbeat messages sent by MDFS will
contain in the message header the FIX repeating group ATHEXRecoveryGrp, with field "20028 =
NoATHEXRecoverySegNums" containing the number of rollbacks that have taken place in that trading session.
Presence of this repeating group indicates that the group this message belongs to (i.e. "1180 = ApplID") must be
reset to a previous state.

Each instance of the repeating group contains field “20029 = ATHEXRecoverySeqNum” indicating the sequence
number of the message (i.e. "1181 = ApplSegNum") that the client must roll back to for that market data group
(inclusive). Multiple instances of the repeating group mean that multiple rollbacks have occurred during the
trading session, which must be handled sequentially by the client.

4.2. Handling Rollbacks

In the event of an MDFS recovery, assuming it is the first rollback that takes place for the trading session,
messages containing the field "20028 = NoATHEXRecoverySeqNums" with a value of “1” will be sent.

For each market data group, when a client receives a message containing the ATHEXRecoveryGrp repeating
group, they have the following options:

1. Completely reset the group’s state, discarding all previously received messages. This can be achieved by:
a. Receiving a snapshot cycle and overwriting the group’s state with the data contained in the
snapshot cycle.
b. Discarding the existing state and asking for a retransmission up to the sequence number
contained in field “20029 = ATHEXRecoverySeqNum”.
2. Roll back the group’s state to the sequence number indicated by field “20029 =
ATHEXRecoverySegNum”.

Page 17 of 74

Notes:

The client must keep track of the sequence numbers they have already performed a rollback for, as the
ATHEXRecoveryGrp group will be present in all messages sent after the point of a rollback. Failure to do
so may result in infinite loops or corrupt group state. A rollback for each sequence number included in
the repeating group must only be performed once.

In case the client has unprocessed messages buffered upon receiving the first message containing a
specific instance of the ATHEXRecoveryGrp repeating group, they must discard them as they may have
been received before the rollback took place, thus containing data that is no longer valid. For example, if
a client receives a message containing an instance of the repeating group with field “20029 =
ATHEXRecoverySegNum” having the value of “1000”, while having buffered messages with field "1181 =
ApplSeqgNum" having values from 1100 to 1500, they must discard those unprocessed messages.

Any retransmissions / snapshot cycles received after a rollback takes place will contain the correct
messages/state.

Only incremental and heartbeat messages sent after each rollback point will have a new entry in the
ATHEXRecoveryGrp repeating group.

Example:

Message Note

"1181 = ApplSegNum" = 100

"1181 = ApplSegNum" = 101

"1181 = ApplSegNum" = 200

MDFS System Recovery takes place

"1181 = ApplSegNum" = 101 The first message indicating a rollback is received. The client
20028 = NoATHEXRecoverySeqNums" =1 | must follow the steps described above to return to a valid state
20029 = ATHEXRecoverySegNum” = 100 | for the group (i.e. they should either completely restore the

group’s state, or discard messages with "1181 = ApplSegNum"
having values from 101 to 200).

"1181 = ApplSegNum" = 102 Each message following a rollback will contain the
20028 = NoATHEXRecoverySeqNums" =1 | ATHEXRecoveryGrp repeating group.
20029 = ATHEXRecoverySegNum” = 100

Figure 6 - Handling Rollbacks Example

Page 18 of 74

4.3. Handling Multiple Rollbacks

In the unlikely scenario where multiple MDFS rollbacks take place, the ATHEXRecoveryGrp repeating group will
contain multiple instances of the "20029 = ATHEXRecoverySeqNum" field, the number of which is contained in
the "20028 = NoATHEXRecoverySeqNums" field.

The client must handle each rollback in sequence, as described in the previous section, taking care to track
which sequence numbers they have already handled the recovery procedure for.

Example:

Message

Note

"1181 = ApplSegNum" = 100

"1181 = ApplSegNum" = 101

"1181 = ApplSegNum" = 200

MDFS

System Recovery takes place

"1181 = ApplSegNum" = 101
"20028 = NoATHEXRecoverySeqNums" = 1
"20029 = ATHEXRecoverySeqNum” = 100

The first message indicating a rollback is received. The client
must follow the steps described above to return to a valid state
for the group (i.e. they should either completely restore the
group’s state, or discard messages with "1181 = ApplSeqNum"
having values from 101 to 200).

"1181 = ApplSegNum" = 102
20028 = NoATHEXRecoverySeqNums" = 1
"20029 = ATHEXRecoverySeqNum” = 100

Each message following a rollback will contain the
ATHEXRecoveryGrp repeating group.

"1181 = ApplSegNum" =300
"20028 = NoATHEXRecoverySeqNums" = 1
20029 = ATHEXRecoverySegNum” = 100

"1181 = ApplSegNum" = 500
"20028 = NoATHEXRecoverySeqNums" = 1
20029 = ATHEXRecoverySegNum” = 100

MDFS

System Recovery takes place

"1181 = ApplSegNum" =301

20028 = NoATHEXRecoverySeqNums" = 2
20029 = ATHEXRecoverySegNum” = 100
20029 = ATHEXRecoverySegNum” = 300

A second message indicating a rollback is received. The client
must follow the steps described above to return to a valid state
for the group (i.e. they should either completely restore the
group’s state, or discard messages with "1181 = ApplSegNum"
having values from 300 to 500).

"1181 = ApplSegNum" = 302

20028 = NoATHEXRecoverySeqNums" = 2
20029 = ATHEXRecoverySegNum” = 100
20029 = ATHEXRecoverySegNum” = 300

Figure 7 -

Handling Multiple Rollbacks Example

Page 19 of 74

5.

TCP/IP Service

This section provides information related to the TCP/IP Service of the MDFS. A client utilizes a single session for
all market data groups and requests (subscription to Incremental Feeds, Snapshots, Retransmission).

Notes:

5.1.

Each MDFS account corresponds to one FIX session with each MDFS Source at its designated port. A client
may utilize multiple concurrent sessions if they utilize multiple MDFS accounts. A client may also use the
same MDFS account to connect to multiple MDFS Sources concurrently.

TCP/IP FIX sessions use TLS/SSL encryption. To establish an SSL connection with the MDFS TLS v1.3 is
recommended.

FIX session messages with field “35 = MsgType” having value “4 = SequenceReset”/ 1 = TestRequest” are
supported by the MDFS and follow the standard FIX specification. Their functionality will not be covered
in this document.

Standard FIX resend functionality by using session messages with field “35 = MsgType” having value “2 =
ResendRequest” is not supported by the MDFS. Instead, upon receiving a valid ResendRequest the MDFS
will reply with a sequence reset message (“35 = MsgType” with value “4 = SequenceReset”) to perform a
gap fill and synchronize with the client. In case of an invalid ResendRequest the MDFS will reply with a
rejection message (“35 = MsgType” with value “3 = Reject”).

Logon Procedure

After establishing a TCP/IP connection, an “A = Logon” message must be sent containing the correct credential
fields, “553 = Username” and “554 = Password”.

If this is the first time a client is connecting to the MDFS, the password will be the default one, and the client will
have to update it upon logon using the “925 = NewPassword” field.

Logon attempts may be rejected for the following reasons:

Provided credentials are incorrect.

Client has another active TCP/IP connection on the particular MDFS Source (only one connection per
account is allowed).

Client has not changed the default password.

New password does not fulfill the minimum password requirements.

If a TCP/IP session is opened and a Logon message is not sent within 30 seconds, the MDFS will terminate the
connection.

Page 20 of 74

5.2 Updating the Password

When updating a client's password, the change will take place immediately on the MDFS Source it was requested
from and will take effect on all other MDFS Sources the next trading day.

If a client wishes to alter passwords on multiple MDFS Sources on the same day, it is important to use the same
“925 = NewPassword” on all Sources. Otherwise, the last updated password will be effective on all MDFS Sources
the next day.

Minimum Requirements

Passwords must be at least 12 characters long and contain at least one of each: uppercase letters, lowercase
letters, numbers, and special characters.

5.3. Sending a Request

After a client is logged in, they can send requests via “BW = ApplicationMessageRequest” messages. Field “1347
= ApplicationRequestType” is used to specify the desired action, with acceptable values being:

e 0= Retransmission of application messages for the specified Applications
e 1 =Subscription to the specified Applications
e 4 =Unsubscribe to the specified Applications
e 100 = Snapshot for the specified Applications

Each request type is covered in the following sections.

Whenever a client sends a “BW = ApplicationMessageRequest message, they will receive either a “3 = Reject” (for
Session-Level validation errors) or a “BX = ApplicationMessageRequestAck” message as a response.

It is the client’s responsibility to send unique (for each day) values for field “1346 = ApplReqlID”, which are used
by the exchange to identify Retransmission Requests.

Notes:

e Each “BW = ApplicationMessageRequest” message pertains to a single group. One cannot make requests
for multiple groups using a single “BW = ApplicationMessageRequest” message.

e There is no limitation on the number of requests the client can make in a single FIX session, or day.

e The client can request concurrent retransmissions for multiple groups.

Page 21 of 74

5.3.1. Request Acknowledgement

A “BX = ApplicationMessageRequestAck” message will be sent for either successful or rejected application
message requests. The possible values for field “1348 = ApplicationResponseType” are:

e “0=SuccessfullyProcessed”
e “1=ApplicationNotExist”

e “2=MessagesNotAvailable”
e “100 = UserNotAuthorized”

In the case of a successful request the “BX = ApplicationMessageRequestAck” message will contain field “1348 =
ApplicationResponseType” with the value “0 = SuccessfullyProcessed” and field “58 = Text” confirming the
requested action. MDFS will then proceed to perform the requested action.

In case of a rejected request the “BX = ApplicationMessageRequestAck” message will contain field “1348 =
ApplicationResponseType” with one of the remaining values which indicate an error, and the value “58 = Text”
field will contain a detailed reason specifying why the request was not accepted.

Note that the contents of the “58 = Text” field are subject to change, so clients should not rely on parsing the
rejection text for implementing application logic.

Acknowledgement Examples:

Field 1348 =
ApplicationResponseType

Field 58 = Text

0 = SuccessfullyProcessed

Accepted Retransmission request for Group: [XATH_CASH_GENERAL],
Encoding: FIX

1 = ApplicationNotExist

Group [XATH_CASH_GENERAL] does not exist

2 = MessagesNotAvailable

Group [XATH_CASH_GENERAL] is in recovery mode.

2 = MessagesNotAvailable

ApplBegSeqNum<1182> cannot be 0.

2 = MessagesNotAvailable

ApplBegSeqNum<1182> exceeds number of sent messages for group.

2 = MessagesNotAvailable

ApplEndSegqNum<1183> exceeds number of sent messages for group.

2 = MessagesNotAvailable

ApplEndSegNum<1183> must be equal or greater than
ApplBegSeqNum<1182>.

100 = UserNotAuthorized

User does not have permission for Group: [XATH_CASH_GENERAL].

100 = UserNotAuthorized

User does not have permission to subscribe for incremental updates

Page 22 of 74

5.3.2. Request Rejection (Session-Level validation error)

A “3 = Reject” message will be sent for malformed request messages (missing required fields or invalid values).

Example:

An application message request with a missing “1355 = RefApplID” field will receive a “3 = Reject” response
message with the following text in field “58 = Text”:

“Bad message. Required field is missing. Field [tag=1355, scope=Repeating Group Instance
(numInGroupTag=1351)]. Message [type=BW, seqNum=2, dictionary=MDFS_FIX50SP2].”

Note that the contents of the “58 = Text” field are subject to change, so clients should not rely on parsing the
rejection text for any application logic.

5.3.3. Message Encoding

The optional field “20012 = ATHEXMessageEncoding” can be included in “BX = ApplicationMessageRequestAck”
messages sent by a client and specifies the encoding of the messages that will be sent out in response to this
request. This applies to requests with field “1347 = ApplicationRequestType” having a value of:

e “0=Retransmission of application messages for the specified Applications”
e “1=Subscription to the specified Applications”
e “100 = Snapshot for the specified Applications”

It has no effect for requests with value:
e “4 =Unsubscribe to the specified Applications”
The possible values for field “20012 = ATHEXMessageEncoding” are:

e O0=FAST
e 1=FIX

If the field is missing from a request, then the value is of “0 = FAST” is implied.

5.4. FAST Encoded Message Encapsulation

If a client requests for messages to be sent using FAST encoding (see section Message Encoding for details), the
market data messages send via the TCP/IP Service for that request will have the value “UEFD =
EncapsulatedFASTData” in field “35 = MsgType”. These are FIX messages that contain an encapsulated FAST
message.

Page 23 of 74

The included field “95 = RawDatalength” contains the number of bytes contained in field “96 = RawData” (the
encapsulated FAST message), exactly as it was when it was first transmitted including header fields such as “52 =
SendingTime”.

This format allows for FAST encoded messages to be sent via a standard FIX session. Upon receiving such a
message, the client must decode the encapsulated FAST message before processing it.

Note: The header field “52 = SendingTime” for messages with field “35 = MsgType” having the value “UEFD =
EncapsulatedFASTData” contains the time when the message was sent to a specific client’s FIX session. The
encapsulated FAST message, when decoded, contains the actual value of “52 = SendingTime”.

5.5. Subscribe Request

A client may request the transmission of real-time incremental traffic for a specific group, starting from the point
of subscription onwards, not including past messages.

This is done by sending a “BW = ApplicationMessageRequest” message with field “1347 =
ApplicationRequestType” having a value of “1 = Subscription to the specified Applications”.

The desired group must be specified in field “1355 = RefApplID”. Note that the “_INCR” or “_SNAP” suffixes are
redundant and must be omitted in this field.

Optionally, the encoding of the real-time messages sent by the MDFS for this group subscription can be set as
described in section Message Encoding.

Note: When a user disconnects from the TCP/IP Service, they will automatically be unsubscribed from all market
data groups. Upon reconnecting they will need to re-subscribe to any groups as appropriate.

5.6. Unsubscribe Request

A client may request to stop the transmission of real-time incremental traffic for a specific group to which they
were previously subscribed.

This is done by sending a “BW = ApplicationMessageRequest” message with field “1347 =
ApplicationRequestType” having a value of “4 = Unsubscribe to the specified Applications”.

The desired group must be specified in field “1355 = RefApplID”. Note that the “_INCR” or “_SNAP” suffixes are
redundant and must be omitted in this field.

Page 24 of 74

5.7. Retransmission Request

A client may request the retransmission of messages for a specific group.

This is done by sending a “BW = ApplicationMessageRequest” message with field “1347 =
ApplicationRequestType” having a value of “0 = Retransmission of application messages for the specified
Applications”.

The desired group must be specified in field “1355 = RefApplID”. Note that the “_INCR” or “_SNAP” suffixes are
redundant and must be omitted in this field.

The range of messages for a request must be specified. The starting point must be provided in field “1182 =
ApplBegSegNum” and the ending point must be provided in field “1183 = ApplEndSegNum”. The values of these
fields relate to the values of field “1181 = ApplSegNum” for that specific group.

The range can be explicit, e.g. [1,1000] or have the ending point be the last available message by setting it to “0”,
e.g. [1,0] (all ranges are inclusive).

Optionally, the encoding of the messages sent by the MDFS as a result of this retransmission request can be set
as described is section Message Encoding.

Note: The field “52 = SendingTime” for FIX messages sent by the MDFS as a result of a retransmission request will
contain the timestamp of the original message. For encapsulated FAST encoded messages see section FAST
Encoded Message Encapsulation.

57.1. Retransmission Request Report

After a retransmission has finished successfully, the client will receive a “BY = ApplicationMessageReport”
message which signals the end of the retransmission.

The report includes field “1357 = RefApplLastSeqNum” which contains the value of field “1181 = ApplSeqNum” of
the last market data message with this retransmission.

5.8. Snapshot Request

A client may request the transmission of the last available Snapshot cycle for a specific group. A new cycle is
generated every 1 minute.

This is done by sending a “BW = ApplicationMessageRequest” message with field “1347 =
ApplicationRequestType” having a value of “100 = Snapshot”.

The desired group must be specified in field “1355 = RefApplID”. Note that the “_INCR” or “_SNAP” suffixes are
redundant and must be omitted in this field.

Page 25 of 74

The snapshot messages for the received cycle will contain the field "369 = LastMsgSeqNumProcessed", whose
value is equal to the value of field “1181 = ApplSegNum” of the last available incremental message at the time the
cycle was generated (i.e. included in the snapshots). This field is used for synchronization and recovery purposes.

Optionally, the encoding of the messages sent by the MDFS as a result of this snapshot request can be set as
described is section Message Encoding.

Note: The field “52 = SendingTime” for FIX messages sent by the MDFS as a result of a snapshot request will
contain the timestamp of the original message (which is the time the snapshot was generated). For encapsulated
FAST encoded messages see section FAST Encoded Message Encapsulation.

5.8.1. Snapshot Request Report

After the transmission of a snapshot cycle has finished successfully, the client will receive a “BY =
ApplicationMessageReport” message which signals the end of the snapshot cycle transmission.

The report includes field “1357 = RefApplLastSegNum” which contains the value of field “1181 = ApplSeqNum’ of
the last market data message sent for this snapshot cycle.

5.9. Disconnecting from the Service

To disconnect from the Service, the client must send a “5 = Logout” message. This message will also be sent from
the MDFS when the server shuts down or in case of session errors (e.g. not sending/responding to heartbeats).

To gracefully complete the disconnection procedure a “5 = Logout” message will be sent by the MDFS to
acknowledge the client’s request.

Note: When a user disconnects from the TCP/IP Service, they will automatically be unsubscribed from all market
data groups, meaning that upon reconnecting they will need to re-subscribe to any groups they want to receive
market data for.

5.10. Heartbeat Messages

The MDFS will transmit heartbeat messages for all incremental groups a client is subscribed to, as described in
section Heartbeat Messages.

If a client is not subscribed to any incremental group and no message is sent from either side for the duration
specified by the client upon logon (field “108 = HeartBtInt”), then a heartbeat message will be sent by the MDFS
as a keep-alive mechanism. Heartbeat messages sent for this reason will not contain the field “369 =
LastMsgSegNumProcessed” or the application sequence control component, as they are not associated with any
market data group but rather the client’s session.

Page 26 of 74

5.11. Differentiating Between Incremental / Snapshots / Retransmissions

A client connecting to the MDFS TCP/IP Service will be receiving real-time incremental data, snapshots and
retransmissions via a single FIX session. It is fundamental for the client to be able to distinguish the respective
messages.

e Snapshots & Incremental / Retransmissions: it is important to differentiate snapshot traffic from real-
time incremental / retransmission traffic, in order to be able to follow the MDFS’ Incremental Feed
Approach. This can be done by examining the suffix “_INCR” or “_SNAP” in field “1180 = ApplID” as
described in the Handling Incremental & Snapshot Traffic section.

e Incremental & Retransmissions: due to the utilization of the Application Sequence Control component,
there is no need to differentiate between real-time incremental messages and retransmissions as the way
they are handled is uniform. Whenever a message is received, regardless of whether it originated from a
group subscription or a retransmission, it can only be processed after having completed processing all
previous messages. Thus, upon receiving a message that cannot be immediately processed, the client
needs to buffer it until it can be processed.

5.12. Initial Connection Procedure

A client connecting to the MDFS via TCP/IP can follow these steps to connect to the data feed and receive real-
time information:

Note: As a client may be receiving data related to multiple groups via a single FIX session, it is important to identify
which group each message refers to, by utilizing the application sequence control component. Steps 3-6 apply to
a single market data group, and as such it is implied that they apply to that specific group, in order to avoid
repetition.

Download reference data using the RDS service.
Connect to the TCP/IP Service and complete the logon procedure.
Request to subscribe to the desired group.
Determine if all data from the start of the day has been received. This is done by checking if the first
message received has field “1181 = ApplSegNum” with a value of “1” or is a heartbeat with field “369 =
LastMsgSegNumProcessed” having a value equal to “0”. If so, then no further action is required so skip to
step 7.
5. Ifthe first message received has field “1181 = ApplSegNum” with a value greater than “1” or is a heartbeat
with field “369 = LastMsgSegNumProcessed” having a value greater than “0”, then the client needs to
buffer all incoming incremental messages for this group and synchronize with MDFS before proceeding to
apply the received messages. This can be done in the following ways:

a. via TCP/IP Snapshot, this method does not include historical data for the day:

i. Identify the sequence number of the last missing incremental message. This can be done
by subtracting 1 from the value of field “1181 = ApplSeqNum” of the first received
incremental message, or the value of “369 = LastMsgSeqNumProcessed” if the first
message received is a heartbeat.

P wnhpRE

Page 27 of 74

Request a snapshot cycle for the group.

Check if the received snapshots include data up to (or exceeding) the last missing
incremental _message. This is done by checking if the value of field “369 =

LastMsgSegNumProcessed” of the received snapshots is less than the sequence number
of the last missing incremental message. If so, request a retransmission with a starting
point equal to the next sequence number from one specified by field “369 =
LastMsgSegNumProcessed” of the received snapshots and an ending point equal to the
sequence number of the last missing incremental message.

Discard all buffered incremental messages with a sequence number up to and including
the value of field “369 = LastMsgSegNumProcessed” provided in snapshot messages
received in this snapshot cycle.

Use the information contained in the snapshot cycle as a baseline to sequentially apply
the messages received by the retransmission.

b. via TCP/IP Retransmission, this method includes historical data for the day:

Identify the sequence number of the last missing incremental message. This can be done
by subtracting 1 from the value of field “1181 = ApplSeqNum” of the first received
incremental message, or the value of “369 = LastMsgSegNumProcessed” if the first
message received is a heartbeat.

Request a retransmission with a starting point equal to “1” to indicate the first message
of the day and the ending point equal to the sequence number of the last missing
incremental message.

Apply all incremental messages received via the retransmission in sequential order.

6. Apply all the remaining buffered incremental messages.
7. Keep processing the incoming incremental messages and applying them in real time.
8. Repeat steps 3-6 for each group of interest.

Page 28 of 74

5.13.

Recovery Procedure

In the unlikely occasion where a message is not received via the TCP/IP Service then the client should follow the
following procedure to perform recovery:

Note: As a client may be receiving data related to multiple groups via the same FIX session, it is important to
identify which group each message refers to by utilizing the application sequence control component. Steps 2-5
apply to a single market data group, and as such it is implied that they apply to that specific group, in order to
avoid repetition.

1.

When a gap in field “1181 = ApplSeqNum” is observed, stop processing and buffer all incoming
incremental messages. See section Detecting Gaps for details.
Identify the sequence number of the first and last missing incremental messages.
The client needs to synchronize with MDFS in order to be able to process any further messages. This can
be done in the following ways:

a. via TCP/IP Snapshot, this method discards historical data for the day:

Request a snapshot cycle for the group.

Check if the received snapshots include data up to (or exceeding) the last missing
incremental message. This is done by checking if the value of field “369 =
LastMsgSegNumProcessed” of the received snapshots is less than the sequence number
of the last missing incremental message. If so, request a retransmission with a starting
point equal to the next sequence number from one specified by field “369 =
LastMsgSegNumProcessed” of the received snapshots and an ending point equal to the
sequence number of the last missing incremental message.

Discard all buffered incremental messages with a sequence number less or equal than the
value of field “369 = LastMsgSeqNumProcessed” included in snapshot messages received
in this snapshot cycle.

Clear any past state and use the information contained in the snapshot cycle as a base to
apply the messages received by the retransmission.

b. via TCP/IP Retransmission, this method retains any historical data for the day (recommended
method):

Request a retransmission with a starting point equal to the sequence number of the first
missing incremental message and an ending point equal to the sequence number of the
last missing incremental message.

Apply all incremental messages received via the retransmission in sequential order.

4. Apply all the remaining buffered incremental messages.
5. Resume processing the incoming incremental messages and applying them in real time.

Page 29 of 74

5.14.

TCP/IP Service Examples

The following sections contain examples of messages received via the TCP/IP Service that showcase the different
types of traffic a client may receive. Clients need to be able to process data they receive for multiple market data
groups and traffic types as noted in section TCP/IP Service.

5.14.1.

Initial Connection Procedure using TCP/IP Snapshot

The following example showcases the typical connection procedure for a client utilizing the TCP/IP Snapshot

functionality.

MDFS Client Notes
<& | Logon
Logon > Acknowledgement
& | ApplicationMessageRequest
ApplReqType = Subscribe
ApplicationMessageRequestAck -
Real-time Incremental Message -> The client needs to request a snapshot
ApplID = XATH_CASH_ORDERS_INCR cycle. This, and all further incremental
ApplSeqNum = 102 messages for this group, must be
buffered by the client for later
processing.
& | ApplicationMessageRequest
ApplReqType = Snapshot
ApplicationMessageRequestAck >
Snapshot Message - Start of the snapshot cycle.
ATHEXSnapshotIndicator = 0
ApplID = XATH_CASH_ORDERS_SNAP
ApplSegNum = 2000
LastMsgSeqNumProcessed = 90
Real-time Incremental Message = Client receives a real-time message in
ApplID = XATH_CASH_ORDERS_INCR the middle of a snapshot cycle, and
ApplSeqNum = 103 must buffer it for later processing.
Snapshot Message - End of the snapshot cycle.
ATHEXSnapshotindicator = 1 The client needs to process all
ApplID = XATH_CASH_ORDERS_ SNAP messages received in this cycle, then
ApplSegNum = 2100 the client needs to request a
LastMsgSeqgNumProcessed = 90 retransmission for messages 91 to 101.
ApplicationMessageReport >
& | ApplicationMessageRequest
ApplReqType =
Retransmission
ApplBegSeqNum = 91
ApplEndSegNum = 101
ApplicationMessageRequestAck -
Retransmitted Incremental Message -

Page 30 of 74

ApplID = XATH_CASH_ORDERS_INCR
ApplSeqgNum =91

Retransmitted Incremental Message -

ApplID = XATH_CASH_ORDERS_INCR

ApplSeqNum = 92

Real-time Incremental Message - Synchronization not complete yet. This

ApplID = XATH_CASH_ORDERS_INCR must be buffered by the client

ApplSegNum = 104

Retransmitted Incremental Message -

ApplID = XATH_CASH_ORDERS_INCR

ApplSeqNum = 93

Retransmitted Incremental Message - All requested messages have been

ApplID = XATH_CASH_ORDERS_INCR retransmitted. After the client has

ApplSegNum =101 processed them, they can process the
buffered messages and resume
processing incoming real-time
messages.

ApplicationMessageReport -

Real-time Incremental Message - Client can process this message on

ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 105

reception and continue normally.

Figure 8 - Initial Connection Procedure using TCP/IP Snapshot

Page 31 of 74

5.14.2. Initial Connection Procedure using TCP/IP Retransmission

In the following example showcases the typical connection procedure for a client utilizing the TCP/IP

Retransmission functionality.

MDFS Client Notes
< | Logon
Logon - Acknowledgement
& | ApplicationMessageRequest
ApplReqType = Subscribe
ApplicationMessageRequestAck -
Real-time Incremental Message - The client needs to request a
ApplID = XATH_CASH_ORDERS_INCR retransmission of messages 1 to
ApplSeqgNum = 102 101.
& | ApplicationMessageRequest
ApplReqType = Retransmission
ApplBegSeqNum =1
ApplEndSeqNum = 101
ApplicationMessageRequestAck -
Retransmitted Incremental Message -
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum =1
Retransmitted Incremental Message -
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum =2
Real-time Incremental Message - Client receives a real-time
ApplID = XATH_CASH_ORDERS_INCR message in the middle of a
ApplSegNum =103 retransmission, so they must
buffer it for later processing.
Retransmitted Incremental Message -
ApplID = XATH_CASH_ORDERS_INCR
ApplSegNum = 3
Retransmitted Incremental Message - All requested messages have
ApplID = XATH_CASH_ORDERS_INCR been retransmitted. After the
ApplSegNum =101 client has processed them, they
can process the buffered
messages and resume processing
incoming real-time messages.
ApplicationMessageReport -
Real-time Incremental Message - Client can process this message

ApplID = XATH_CASH_ORDERS_INCR
ApplSegNum = 104

on reception and continue
normally.

Figure 9 - Initial Connection Procedure using TCP/IP Retransmission

Page 32 of 74

5.14.3. Different Heartbeat Types

This example shows the difference between session heartbeats and market data group heartbeats.

MDFS Client Notes
<& | Logon
HeartBtInt = 60
Logon > Acknowledgement
No traffic on either direction for 60
seconds.
Heartbeat - Session heartbeat. Does not

include the Application Sequence
Control component or the field
LastMsgSeqNumProcessed.

& | ApplicationMessageRequest
ApplReqType = Subscribe
RefApplID = XATH_CASH_ORDERS

ApplicationMessageRequestAck >
& | ApplicationMessageRequest
ApplReqType = Subscribe
RefApplID = XATH_CASH_GENERAL
ApplicationMessageRequestAck -
Real-time Incremental Message - As a result of this message being
ApplID = XATH_CASH_ GENERAL _INCR sent, no heartbeat will be sent for
ApplSeqNum = 1 XATH_CASH_ GENERAL at this
point.
No traffic is produced for 30
seconds for group
XATH_CASH_ORDERS.
Heartbeat > Group heartbeat. The value 0 of
LastMsgSeqNumProcessed = 0 LastMsgSeqNumProcessed
ApplID = XATH_CASH_ GENERAL _INCR indicates that no messages have
ApplSeqNum =0 been sent for this group.

Figure 10 - Different Heartbeat Types

Page 33 of 74

5.14.4. Multiple Market Data Groups via a Single FIX Session

In the following example a client receives interleaved real-time incremental traffic for multiple Market Data
groups and must be able to process the messages for each group independently, by examining the Application
Sequence Control component.

34 = MsgSeqNum 1180 = ApplID 1181 = ApplSeqNum Type
57 XATH_CASH_GENERAL_INCR | 100 Incremental
58 XATH_CASH_ORDERS_INCR | 457 Incremental
59 XATH_CASH_GENERAL_INCR | 101 Incremental
60 XATH_CASH_ORDERS_INCR | 458 Incremental
61 XATH_CASH_ORDERS_INCR | 459 Incremental

Figure 11 - Multiple Market Data Groups via a Single FIX Session

5.14.5. Multiple Traffic Types via a Single FIX Session

In the following example a client receives interleaved incremental, snapshot and retransmission traffic and must
be able to differentiate between the traffic types and process them accordingly.

34 = MsgSeqNum 1180 = ApplID 1181 = ApplSeqNum Type

5298 XATH_CASH_GENERAL_SNAP | 32890 Snapshot

5299 XATH_CASH_GENERAL_INCR | 1 Retransmission
5300 XATH_CASH_GENERAL_SNAP | 32891 Snapshot

5301 XATH_CASH_GENERAL_INCR | 2 Retransmission
5302 XATH_CASH_GENERAL_INCR | 12005 Incremental
5303 XATH_CASH_GENERAL_INCR | 3 Retransmission
5304 XATH_CASH_GENERAL_INCR | 12006 Incremental

Figure 12 - Multiple Traffic Types via a Single FIX Session

Page 34 of 74

6. UDP Multicast Service

This section provides information related to the UDP Multicast Service of the MDFS.

6.1. Handling Data Feeds on Sources A & B

As aforementioned the MDFS replicates all feeds on two identical Sources (A & B). This is done to combat the
inherent unreliability of the UDP protocol, where the delivery of data packets is not guaranteed and there may be
cases of lost packets. It is strongly recommended that clients connect to both Sources in order to handle any such
incidents non-disruptively (without resorting to recovery).

In a typical scenario the client (assuming they are connected to both Source A & B) should, for each duplicate
message, keep the message received first from either Source and discard the subsequent copy they receive from
the other Source.

The following table is a simplified example of the typical data flow on Sources A & B, with shaded cells representing
messages the client should keep, discarding the rest:

Field 1181 = ApplSeqNum

Order Source A Source B
1 100

2 100

3 101

4 101

5 102

6 102

7 103

8 103

Figure 13 - Sources A & B Example

Page 35 of 74

6.2. Handling Gaps in Message Sequence Numbers

The client should always check the field “1181 = ApplSeqNum” for gaps in the message sequence of any UDP
multicast feed they are connected to. In the case of a gap in the sequence numbers in either of the two Sources
the client should receive the message through the other Source (assuming they are connected to both Source A
& B).

The following table is an example of a scenario in which a sequence number gap occurs in one of the Sources,
where the shaded cells represent the messages, the client should keep:

Field 1181 = ApplSeqNum

Order Source A Source B
1 100

2 100

3 101

4 101

5 102

6 103

7 103

Figure 14 - Handling Message Sequence Gaps

In the example above the message with value “102” in field “1181 = ApplSegNum” was not received through
Source A, but was received through Source B. In this case the client should have no interruption of data flow as
they can utilize the message received from Source B.

6.3. Differentiating Between Incremental / Snapshots / Retransmissions

It is important for a client connecting to the MDFS UDP Multicast Service may to know when there is a need to
differentiate between these different types of data and how to do it.

e Snapshots & Incremental / Retransmissions: it is important to differentiate snapshot traffic from real-

time incremental / retransmission traffic, in order to be able to follow the MDFS’ Incremental Feed
Approach.
This is easily done for the UDP Multicast Service as all Incremental multicast groups will be transmitted
via the UDP port 10000, and all Snapshot multicast groups will be transmitted via the UDP port 20000.
Alternatively, this can be done by examining the suffix “_INCR” or “_SNAP” in field “1180 = ApplID” as
described in the Handling Incremental & Snapshot Traffic section.

e Incremental & Retransmissions: Since real-time incremental data are served by UDP multicast while
retransmissions are served via the TCP/IP service, no further logic is required.

Moreover, due to the utilization of the Application Sequence Control component, there is no need to
differentiate between real-time incremental messages and retransmissions as the way they are handled

Page 36 of 74

6.4.

is uniform. Whenever a message is received, regardless of whether it originated from an incremental
multicast group or a TCP/IP retransmission, it can only be processed after having completed processing
all past messages. Therefore, when receiving messages that cannot be immediately processed, the client
needs to buffer these messages until processing is possible.

Initial Connection Procedure

A client connecting to the MDFS via UDP multicast can follow these steps to connect to the data feed and receive
real-time information:

Note: As a client may be receiving data related to multiple groups via multicast, it is important to identify which
group each message refers to by utilizing the application sequence control component. Steps 2-5 apply to a single
market data group, and as such it is implied that they apply to that specific group, in order to avoid repetition.

1.
2.
3.

Download reference data using the RDS service.
Start listening to the Incremental feed.
Determine if all data from the start of the day has been received. This is done by checking if the first
message received has field “1181 = ApplSegNum” with a value of “1” or is a heartbeat with field “369 =
LastMsgSegNumProcessed” having a value equal to “0”. If so, then no further action is required so skip to
step 6.
If the first message received has field “1181 = ApplSegNum” with a value greater than “1” or is a heartbeat
with field “369 = LastMsgSegNumProcessed” having a value greater than “0”, then the client needs to
buffer all incoming incremental messages for this group and synchronize with MDFS in order to be able
to apply the received messages. This can be done in the following ways:
a. via UDP multicast Snapshot, this method does not include historical data for the day:
i. Start listening to the Snapshot Feed. Discard all snapshot messages until you reach the
message indicating the start of a snapshot cycle. Keep listening until you receive the
message indicating the end of the snapshot cycle with.

Note: in the unlikely event where a snapshot cycle is received where the value of “369 =
LastMsgSegNumProcessed” is less than the sequence number of the last missing
incremental _message (identified by subtracting 1 from the value of field “1181 =
ApplSeqNum” of the first received incremental message, or the value of “369 =
LastMsgSegNumProcessed” if the first message received is a heartbeat), then the client
should discard that snapshot cycle and repeat this step until a snapshot cycle containing
information up to and including the last missing message (see Snapshot Cycles for details)
is received.

ii. Discard all buffered incremental messages with a sequence number up to and including
the value of field “369 = LastMsgSeqNumProcessed” provided in snapshot messages
received in this snapshot cycle.

iii. Use the information contained in the snapshot cycle as a baseline to sequentially apply
the received incremental messages on.

b. via TCP/IP Snapshot, this method does not include historical data for the day:

Page 37 of 74

i. Identify the sequence number of the last missing incremental message. This can be done
by subtracting 1 from the value of field “1181 = ApplSeqNum” of the first received
incremental message, or the value of “369 = LastMsgSegqNumProcessed” if the first
message received is a heartbeat.

ii. If not already connected, connect to the TCP/IP Service and complete the logon
procedure, then request a snapshot cycle for the group.

iii. Check if the received snapshots include data up to (or exceeding) the last missing
incremental message. This is done by checking if the value of field “369 =
LastMsgSegNumProcessed” of the received snapshots is less than the sequence number
of the last missing incremental message. If so, request a retransmission with a starting
point equal to the next sequence number from one specified by field “369 =
LastMsgSegNumProcessed” of the received snapshots and an ending point equal to the
sequence number of the last missing incremental message.

iv. Discard all buffered incremental messages with a sequence number up to and including
the value of field “369 = LastMsgSegNumProcessed” provided in snapshot messages
received in this snapshot cycle.

v. Use the information contained in the snapshot cycle as a baseline to sequentially apply
the messages received by the retransmission.

c. via TCP/IP Retransmission, this method includes historical data for the day:

i. Identify the sequence number of the last missing incremental message. This can be done
by subtracting 1 from the value of field “1181 = ApplSeqNum” of the first received
incremental message, or the value of “369 = LastMsgSegNumProcessed” if the first
message received is a heartbeat.

ii. If not already connected, connect to the TCP/IP Service and complete the logon
procedure, then request a retransmission with a starting point equal to “1” to indicate
the first message of the day, and the ending point equal to the sequence number of the
last missing incremental message.

iii. Apply all incremental messages received via the retransmission in sequential order.

5. Apply all the remaining buffered incremental messages.
6. Keep processing the incoming incremental messages and applying them in real time.
7. Repeat steps 2-5 for each group of interest.

Note: for details regarding the TCP/IP Service, please see section TCP/IP Service.

Page 38 of 74

6.5.

Recovery Procedure

In the unlikely occasion where a message is not available through either Source A or B then the client should follow
the following procedure to perform recovery:

Note: As a client may be receiving data related to multiple groups via the same FIX session, it is important to
identify which group each message refers to by utilizing the application sequence control component. Steps 2-4

apply to a single market data group, and as such it is implied that they apply to that specific group, in order to
avoid repetition.

1.

When a gap in field “1181 = ApplSeqNum” is observed, stop processing and buffer all incoming
incremental messages. See section Detecting Gaps for details.

Identify the sequence number of first and last missing incremental messages. The last missing message
can be identified by subtracting 1 from the value of field “1181 = ApplSeqNum” of the first received
incremental message, or the value of “369 = LastMsgSegNumProcessed” if the first message received is a

heartbeat.

The client needs to synchronize with MDFS in order to be able to process any further messages. This can
be done in the following ways:
a. via UDP multicast Snapshot, this method discards any historical data for the day:

Start listening to the Snapshot Feed. Discard all snapshot messages until you reach the
message indicating the start of a snapshot cycle. Keep listening until you receive the
message indicating the end of the snapshot cycle.

Note: in the unlikely event where a snapshot cycle is received where the value of “369 =
LastMsgSegNumProcessed” of the received snapshots is less than the sequence number
of the last missing message, then the client should discard that snapshot cycle and repeat
this step until a snapshot cycle containing information up to and including the last missing
message (see Snapshot Cycles for details) is received.

Disconnect from the Snapshot Feed. Once you have received a full snapshot cycle you will
have all the information needed to synchronize with the accompanying incremental
stream.

Discard all buffered incremental messages with a sequence number less or equal than the
value of field “369 = LastMsgSeqNumProcessed” included in snapshot messages received
in this snapshot cycle.

Clear any past state and use the information contained in the snapshot cycle as a base to
apply future incremental messages on.

b. via TCP/IP Snapshot, this method discards historical data for the day:

If not already connected, connect to the TCP/IP Service and complete the logon
procedure, then request a snapshot cycle for the group.

Check if the received snapshots include data up to (or exceeding) the last missing
incremental message. This is done by checking if the value of field “369 =
LastMsgSegNumProcessed” of the received snapshots is less than the sequence number
of the last missing incremental message. If so, request a retransmission with a starting
point equal to the next sequence number from one specified by field “369 =

Page 39 of 74

LastMsgSegNumProcessed” of the received snapshots and an ending point equal to the
sequence number of the last missing incremental message.

iii. Discard all buffered incremental messages with a sequence number less or equal than the
value of field “369 = LastMsgSeqNumProcessed” included in snapshot messages received
in this snapshot cycle.

iv. Clear any past state and use the information contained in the snapshot cycle as a base to
apply the messages received by the retransmission.

c. via TCP/IP Retransmission, this method retains any historical data for the day (recommended
method):

i. If not already connected, connect to the TCP/IP Service and complete the logon
procedure, then request a retransmission with a starting point equal to the sequence
number of the first missing incremental message and an ending point equal to the
sequence number of the last missing incremental message.

ii. Apply all incremental messages received via the retransmission in sequential order.

4. Apply all the remaining buffered incremental messages.
5. Resume processing the incoming incremental messages and applying them in real time.

Note: for details regarding the TCP/IP Service, please see section TCP/IP Service.

Page 40 of 74

6.6. Multicast Service Examples

6.6.1. Initial Connection Procedure using UDP Multicast Snapshot

In the following example showcases the typical connection procedure for a client utilizing the UDP Multicast

Snapshot functionality.

MDFS Messages

Client Messages

Notes

Client joins multicast group
XATH_CASH_ORDERS_INCR.

ApplSeqNum =113

Real-time Incremental Message - The client needs to receive a full

ApplID = XATH_CASH_ORDERS_INCR MCAST snapshot cycle. This, and all further

ApplSeqNum = 102 incremental messages for this group,
must be buffered by the client for later
processing.

Real-time Incremental Message -

ApplID = XATH_CASH_ORDERS_INCR MCAST

ApplSegNum =110
Client joins multicast group
XATH_CASH_ORDERS_SNAP.

Snapshot Message - Start of the snapshot cycle.

ApplID = XATH_CASH_ORDERS_SNAP MCAST

ApplSegNum = 2000

LastMsgSeqNumProcessed = 110

Real-time Incremental Message - Client receives a real-time message in

ApplID = XATH_CASH_ORDERS_INCR MCAST the middle of a snapshot cycle, so they

ApplSeqgNum =111 must buffer it for later processing.

Snapshot Message - End of the snapshot cycle.

ApplID = XATH_CASH_ORDERS_ SNAP MCAST The client needs to process all messages

ApplSegNum = 2100 received in this cycle.

LastMsgSeqNumProcessed = 110
After the client has processed them,
they should discard all real-time
incremental messages with ApplSegNum
less than or equal to 110, then they can
process the remaining buffered
messages and resume processing
incoming real-time messages.

Real-time Incremental Message -

ApplID = XATH_CASH_ORDERS_INCR MCAST

ApplSeqNum =112

Real-time Incremental Message -

ApplID = XATH_CASH_ORDERS_INCR MCAST

Figure 15 - Initial Connection Procedure using UDP Multicast Snapshot

Page 41 of 74

6.6.2. Initial Connection Procedure using TCP/IP Snapshot

In the following example showcases the typical connection procedure for a client utilizing the TCP/IP Snapshot

functionality.

MDFS Messages

Client Messages

Notes

Client joins multicast group
XATH_CASH_ORDERS_INCR.

Real-time Incremental Message -> The client needs to request a
ApplID = XATH_CASH_ORDERS_INCR MCAST snapshot cycle. This, and all
ApplSeqgNum =102 further incremental messages
for this group, must be buffered
by the client for later
processing.
& ApplicationMessageRequest
TCP ApplReqType = Snapshot
ApplicationMessageRequestAck ->
TCP
Snapshot Message - Start of the snapshot cycle.
ApplID = XATH_CASH_ORDERS_SNAP TCP
ApplSegNum = 2000
LastMsgSeqNumProcessed = 90
Real-time Incremental Message - Client receives a real-time
ApplID = XATH_CASH_ORDERS_INCR MCAST message in the middle of a
ApplSegNum =103 snapshot cycle, so they must
buffer it for later processing.
Snapshot Message = End of the snapshot cycle.
ApplID = XATH_CASH_ORDERS_ SNAP TCP The client needs to process all
ApplSegNum = 2100 messages received in this cycle,
LastMsgSeqNumProcessed = 90 then the client needs to request
a retransmission for messages
91 to 101.
ApplicationMessageReport ->
TCP
< ApplicationMessageRequest
TCP ApplReqType = Retransmission
ApplBegSeqNum =91
ApplEndSegNum = 101
ApplicationMessageRequestAck -
TCP
Retransmitted Incremental Message -
ApplID = XATH_CASH_ORDERS_INCR TCP
ApplSeqNum =91
Retransmitted Incremental Message -
ApplID = XATH_CASH_ORDERS_INCR TCP
ApplSegNum =92
Real-time Incremental Message - The client needs to buffer this
ApplID = XATH_CASH_ORDERS_INCR MCAST message.
ApplSeqNum = 104
Retransmitted Incremental Message -

Page 42 of 74

ApplID = XATH_CASH_ORDERS_INCR TCP

ApplSeqNum =93

Retransmitted Incremental Message - All requested messages have

ApplID = XATH_CASH_ORDERS_INCR TCP been retransmitted. After the

ApplSeqNum =101 client has processed them, they
can process the buffered
messages and resume
processing incoming real-time
messages.

ApplicationMessageReport -

TCP
Real-time Incremental Message - The client can process this
ApplID = XATH_CASH_ORDERS_INCR MCAST message immediately and

ApplSeqNum = 105

continue normal operation.

Figure 16 - Initial Connection Procedure using TCP/IP Snapshot

Page 43 of 74

6.6.3. Initial Connection Procedure using TCP/IP Retransmission

In the following example showcases the typical connection procedure for a client utilizing the TCP/IP

Retransmission functionality.

MDFS Messages

Client Messages

Notes

Client joins multicast group
XATH_CASH_ORDERS_INCR.

Real-time Incremental Message -> The client needs to request a
ApplID = XATH_CASH_ORDERS_INCR MCAST retransmission of messages 1
ApplSeqgNum = 102 to 101.
< ApplicationMessageRequest
TCP ApplReqType = Retransmission
ApplBegSeqNum =1
ApplEndSeqNum =101
ApplicationMessageRequestAck ->
TCP
Retransmitted Incremental Message -
ApplID = XATH_CASH_ORDERS_INCR TCP
ApplSeqNum =1
Retransmitted Incremental Message -
ApplID = XATH_CASH_ORDERS_INCR TCP
ApplSeqNum =2
Real-time Incremental Message - Client receives a real-time
ApplID = XATH_CASH_ORDERS_INCR MCAST message in the middle of a
ApplSegNum =103 retransmission, so they must
buffer it for later processing.
Retransmitted Incremental Message -
ApplID = XATH_CASH_ORDERS_INCR TCP
ApplSegNum =3
Retransmitted Incremental Message - All requested messages have
ApplID = XATH_CASH_ORDERS_INCR TCP been retransmitted. After the
ApplSegNum =101 client has processed them,
they can process the buffered
messages and resume
processing incoming real-time
messages.
ApplicationMessageReport -
TCP
Real-time Incremental Message -
ApplID = XATH_CASH_ORDERS_INCR MCAST

ApplSeqNum = 104

Figure 17 - Initial Connection Procedure using TCP/IP Retransmission

Page 44 of 74

7. FAST Message Encoding

The FAST Protocol is developed, maintained and supported by the FIX Trading Community’s Market Data
Optimization Working Group. The protocol is intended to enable efficient use of bandwidth in high volume
messaging without incurring material processing overhead or latency. The MDFS’ implementation is based on the
FAST 1.2 specification. Please refer to the documentation available at the provided link for more details regarding
encoding and decoding FAST FIX messages.

The following methods are utilized for data compression:

o Implicit Tagging

e QOptional Fields

e Field Operators

e Presence Maps

e Stop-bit Encoding
e Binary Encoding

These methods are further explained in subsequent sections of this document.
The FAST format encoding rules for MDFS are distributed as XML Templates.

Note: While the MDFS is designed to work with FAST 1.2, currently no features of the 1.2 revision are utilized for
performance reasons. Thus, the MDFS is currently backwards compatible with FAST 1.1, but this is subject to
change in the future if any FAST 1.2 features are utilized.

Page 45 of 74

https://www.fixtrading.org/standards/fast/

7.1. Template Versioning

Each version of MDFS is accompanied by a corresponding FAST templates XML file. The format of all FAST encoded
FIX messages sent by the MDFS is described in this document containing templates for each message type. A
sample of the FAST template XML format can be found in the appendix.

Each message type used by the MDFS is described by a <template> element in the XML file. Each <template>
element has an “id” attribute that is a unique number, and a “name” attribute that is a unique string. The “name”
attribute includes the template’s “id” as a suffix.

In each revision of the templates XML file there are up to two <template> elements for each message type with
different “id” attributes, one describes the latest version of the message and the other describes the previous
version (if applicable). This is done to facilitate seamless transition from one version of the MDFS to the next, as
the client may start utilizing the latest templates XML file before the latest version of the MDFS is released, as the
XML will contain <template> elements for both the old and new version of the message.

The client can determine which <template> corresponds to the latest version of a message by looking at the “id”
attribute. The value of the “id” attribute always increments and as such the latest version of a message is the one
with the largest value in its “id” attribute.

For example:

Templates_v10.xml includes:

<!--CURRENT - Trading Session Status Message-->
<template name="TradingSessionStatus_100" id="100">

<!--DEPRECATED - Trading Session Status Message-->
<template name="TradingSessionStatus_65" id="65">

in this case the template with id="100" should be used when the new version of MDFS is released, and the
template with id="65" is used by the previous MDFS version.

Templates_v11.xml includes:

<!--CURRENT - Trading Session Status Message—-->
<template name="TradingSessionStatus_120" id="120">

<!--DEPRECATED - Trading Session Status Message-->
<template name="TradingSessionStatus_100" id="100">

in this case the template with id="120" should be used when the new version of MDFS is released, and the
template with id="100" now represents the template used by the previous MDFS version.

Page 46 of 74

7.2. Packet Structure

The following table is a representation of a FAST Packet:

FAST Encoded Message

Fields / Groups Sequence (Repeating Group) Fields/Groups
Message | | Field / Field / Instance 1 Instance m Field / Field /
PMAP Group | ... | Group : : Group| ... |Group
1 . PMAP Fields / BMAP Fields / 1 .
Groups Groups

Figure 18 - FAST Packet Structure

Where:

e Field: A FAST-encoded FIX field.

e Group: A group of FAST-encoded FIX fields, that usually appear together. Appears as a <group> element in
FAST .xml templates.

e Sequence (Repeating Group): A FIX repeating group. Appears as a <sequence> element in FAST .xml
templates.

e Instance: An instance of a FIX repeating group.

7.3. Data Types

The following data types used in FAST templates:

e Signed and unsigned 32/64-bit integer

e Decimal number

e Length

e String - ASCII (7-bit) strings (no special characters allowed)
e Byte vector

Page 47 of 74

7.4. Templates & Implicit Tagging

Every FAST message has a template ID as the first integer field that will be used by the decoder to choose what
template will be used to decode it. The template describes what fields from the original FIX message are included,
their types and transfer encodings.

By having a fixed field order, FAST templates reduce redundancies within a message, as the field meaning is
deferred by its position in the message and there is no need to transfer the field tag to describe the field value. If
the original FIX message contains fields that are not specified in the template, they are simply ignored when
encoding, and as such do not need to be decoded as well.

There can be several templates for the same FIX message (“MsgType = X', for instance), but referring to different
versions of the message layout.

The templates are distributed in a single XML file. An example of the format can be found in the appendix.

7.5. Mandatory and Optional Fields

The optional presence attribute indicates whether the field is mandatory or optional. If the attribute is not
specified, the field is mandatory.

7.6. Field Operators

Field operators are used to remove redundancies in the data values. The message templates (which are provided
beforehand) serve as the metadata for the message. Upon receiving a message, the recipient has complete
knowledge of the message layout via the template definition and is able to determine the field values of the
incoming message.

The operators used by the MDFS are:

e (None): The field will be encoded as is.

e Constant: The field will always have a predetermined value.

o Default: The field is omitted from the message if it is equal to the default value. Used in MDFS templates
to force the usage of a PMAP bit for the field.

More details about these operators can be found in the FAST Specification documents.

Page 48 of 74

7.7. Presence Map (PMAP)

The presence map is a bit map indicating the presence or absence of a field in the message body. One bit is used
in the PMAP for each field that requires it. The allocation of a bit for a field in the presence map is governed by
the FAST field encoding rules.

7.8. Stop Bit Encoding

All FAST fields are stop bit encoded with the exception of byte vectors. Instead of using a length indicator or the
standard FIX-separator (<SOH> byte), each byte consists of 7 bits for data transfer and the 8 bit to indicate the
end of a field value.

7.9. Binary Encoding

Binary encoding is used on numbers, rendering them into binary across the 7 data bits in each byte. Thus, a number
less than 277-1, (127) will only occupy one byte, a number between 277 and 2/27*2 —1 (16,383), will occupy two
bytes etc.

7.10. Decoding Overview

The following is a brief overview of the steps required to decode a FAST message to the underlying FIX format:

The client receives a FAST encoded FIX message.

Template Identification.

Extraction of binary encoded bits.

Mapping the received bits to template fields.

Field decoding using operators to determine values according to the template.
Generation and processing of the FIX message.

ok wnNE

Page 49 of 74

7.11. Decoding Example

The following table provides a detailed example on how to decode a FAST-encoded message. The template used
in this example can be found in the appendix.

Message Data
Hex: OXF8 0xA2 0x82 0x54 0x45 0X53 0xD4 0x82 0XBO OxFF 0x04 0x9E 0x81 0x02 OxAC

Binary: 11111000 10100010 10000010 01010100 01000101 01010011 11010100 10000010 10110000 1111111
00000100 10011110 10000001 00000010 10101100
Message PMAP: 11111000

_ Attributes PMAP Bit| PMAP | Encoded | >t°P Bit
[Field / Type Presence . . Decoded Value
Required | bit Value
Operators Value
Template ID None ulnt32 | Mandatory true 1 {10100010| 0100010 34
1|35 = MsgType Constant | string | Mandatory| false “W”
2 {1021 = MDBookType | Default | ulnt32 | Optional true 1 10000010 |_0000010* 1
01010100 (01010100
. . 01000101 (01000101 y "
3|55 = Symbol Default | string | Optional true 1 01010011 |01010011 TEST
11010100 (01010100

Sequence (Repeating Group) Data
Hex: 0x82 0xB0O OxFF 0x04 Ox9E 0x81 0x02 OxAC
Binary: 10000010 10110000 1111111 00000100 10011110 10000001 00000010 10101100
4 268 = NoMDEntries | Default | length | Optional | true | 1 [10000010| 0000010* 1
Repeating Group Instance Data
Hex: 0xB0 OxFF 0x04 Ox9E 0x81 0x02 OxAC
Binary: 10110000 1111111 00000100 10011110 10000001 00000010 10101100
PMAP: 10110000

511023 = MDPricelLevel | Default | ulnt32 | Optional true 0

Exponent: |[Exponent:
1111111 |_1111111
- 107-1
6 |270 = MDEntryPx Default |decimal| Optional true 1 Mantissa: |Mantissa: 54.2
00000100 |_0000100
10011110|_0O011110
->542
Exponent: |[Exponent:
10000001 |_0000001*
- 1070

7 1271 = MDEntrySize Default |decimal| Optional true 1 Mantissa: [Mantissa: 300
00000010 |_0000010
10101100 | 0101100
- 300

Figure 19 - FAST Decoding Example

Page 50 of 74

* To decode Positive arithmetic fields that are nullable (according to the FAST protocol standard) we need to take
the positive value of the result (without the stop bits) and subtract 1 from it. That is why i.e NoMDEntries which
results to 00000010 without the stop bit is translated to 1, or why the exponent for MDEntrySize which results to
0000001 without stop bit is translated to 0.

Note:
Utilized PMAP bits are in bold.

Stop bits are underlined.

7.12. Partial Decoding

If latency is of critical importance, a client can perform a partial decoding of the FAST message in order to decide
whether to discard a message prior to decoding it.

This can be very useful when receiving multicast traffic via both Source A and B, by quickly extracting the sequence
number from the FAST message and determining whether this is a packet has already been received from the
other source, or if it indicates a rollback in the market data group.

ApplSegNum

All FAST encoded messages sent by MDFS are guaranteed to have the same value in field "34=MsgSeqNum" as
in field "1181=ApplSeqNum". This means that for the purposes of simpler partial FAST decoding, the field
"34=MsgSeqNum" can be used to determine if a message is a duplicate as it has a constant position in the FAST
encoded message structure (compared to field "1181=ApplSegNum" which does not).

Because the "34= MsgSegNum" field is positioned in the header component of the message and no optional fields
are before it, a client can advance the decoder state until it reaches the N-th stop-bit position where the field "34=
MsgSeqNum" is located and decode the stop-bit encoded value.

As of version 6 (MDFS_FIX50SP2_FAST_1.2_Templates_v6.xml) of the MDFS FAST templates XML file the first FAST
Fields encountered are: Global PMap, Template ID, SenderComplID, TargetCompID, MsgSeqNum.

Each of the above FAST fields take up one stop-bit encoded value, thus the field "34 = MsgSegNum" is at the 5th
stop-bit encoded value.

ATHEXRecoveryGrp

To check for the presence of the ATHEXRecoveryGrp repeating group (indicating that a rollback has taken place),
the client must check the presence map bit for the repeating group according to the message template.

Page 51 of 74

8. Order Book Handling

This section contains instructions on how to maintain the different types of order books for an instrument.
The three types of order books supported by the MDFS are:

e Top of Book
e Price Depth
e Order Depth

For each instrument, the client can keep these order books up to date by following the instructions contained in
this section when processing the Incremental messages received through the MDFS. Keep in mind that:

e In accordance with FIX guidelines all order book handling instructions are handled by messages that
contain repeating groups with field “269=MDEntryType” having value “0 = Bid”, “1 = Offer” or “J = Empty
book”. As such any other repeating group types, such as those with field “269=MDEntryType” having value
“2 =Trade” should not be used to alter the order book, as the appropriate Order Depth Update messages
for each side of the trade will be sent containing the appropriate order book maintenance actions.

e Thereis no parity in the values of field “60 = TransactTime” between the Oder Depth & Top of Book/Price
Depth books as these are handled independently, i.e. the value of field “60 = TransactTime” of an Orde
Depth Update message will be different from that of the Top of Book/Price Depth Update message that
is triggered by the same order altering both books.

Note: Some fields that do not affect the handling of the orders books will be omitted from the example
messages included in this section to improve readability. The actual messages transmitted will include
additional fields.

Page 52 of 74

8.1. Market/Stop/ATO/ATC orders

This section details the handling of Market/Stop/ATO/ATC orders in the order & price depth books.

8.1.1. Order Depth Book

Market/Stop (value “1=Market”/” = Stop” in field “40 = OrdType”) and ATO/ATC orders (value “2 = At the Opening
(OPG)”/”7 = At the Close” in field “59 = TimelnForce”) do not have a set price (thus do not contain the field “270
= MDEntryPx”). Those orders are always placed at the top of the order depth book with the value of “b = Market
Bid”/”c = Market Offer” in field “269 = MDEntryType” and are ordered by their release timestamp in the matching
engine.

8.1.2. Top of Book/Price Depth Book

The volume of Market+ATO or ATC orders is disseminated via the Top of Book / Price Depth books. A repeating
group with the value of “b = Market Bid”/”c = Market Offer” in field “269 = MDEntryType” will be sent to update
the volume and number of orders placed for the opening auction (Market+ATO), closing auction (ATC) and any
other intraday auction, as well as during the closing price trading phase (ATC). These repeating group entries do
not contain the field “270 = MDEntryPx”.

8.2. Empty Book

Instructs the client to empty a book of a specific instrument. Typically sent at the start of the trading session.

Example Message:

Field Value
35 MsgType X = MarketDatalncrementalRefresh
1021 | MDBookType 2 = Price Depth
279 MDUpdateAction | 0= New
55 Symbol Example Instrument
269 MDEntryType J = Empty book
264 MarketDepth 10 =10 Levels

A similar message may be sent for any order book type.

Page 53 of 74

8.3. Top of Book

This type of order book contains only be top price level for an instrument.

Incremental Refresh messages relevant to the Top of Book of an instrument are sent multiple times during each
trading session in order to give the client the information necessary to keep it up to date.

Examples of how to handle the various possible scenarios follow.

8.3.1. New — Addition to an empty side

Consider the following initial state for the client’s Top of Book order book:

Bid Offer
Price | Volume | No. of Orders | Price | Volume | No. of Orders
- - - 70 20 4

The following message is sent:

Field Value
35 MsgType X = MarketDatalncrementalRefresh
1021 | MDBookType 1 =Top of Book
279 MDUpdateAction | 0= New
55 Symbol Example Instrument
269 MDEntryType 0 =Bid
270 MDEntryPx 50
271 MDEntrySize 10
264 MarketDepth 1 =Top of Book
1023 | MDPricelevel 1
346 NumberOfOrders | 2

The message above indicates a new Top of Book entry for the previously empty bid side. This results in the client’s
Top of Book order book looking as follows:

Bid Offer
Price | Volume | No. of Orders | Price | Volume | No. of Orders
50 10 2 70 20 4

Page 54 of 74

8.3.2. Change — Change of volume / no. of orders

Consider the following initial state for the client’s Top of Book order book:

Bid Offer
Price | Volume | No. of Orders | Price | Volume | No. of Orders
50 10 2 70 20 4

The following message is sent:

Field Value
35 MsgType X = MarketDatalncrementalRefresh
1021 | MDBookType 1 =Top of Book
279 MDUpdateAction | 1 =Change
55 Symbol Example Instrument
269 MDEntryType 0 =Bid
270 MDEntryPx 50
271 MDEntrySize 4
264 MarketDepth 1 =Top of Book
1023 | MDPricelLevel 1
346 NumberOfOrders | 1

The message above indicates a change in the volume and no. of orders at the bid side. This results in the client’s
Top of Book order book looking as follows:

Bid Offer
Price | Volume | No. of Orders | Price | Volume | No. of Orders
50 4 1 70 20 4

Page 55 of 74

8.3.3. Delete — A side becomes empty

Consider the following initial state for the client’s Top of Book order book:

Bid Offer
Price | Volume | No. of Orders | Price | Volume | No. of Orders
50 4 1 60 6 1

The following message is sent:

Field Value
35 MsgType X = MarketDatalncrementalRefresh
1021 | MDBookType 1 =Top of Book
279 MDUpdateAction | 2 =Delete
55 Symbol Example Instrument
269 MDEntryType 1 = Offer
270 MDEntryPx 60
271 MDEntrySize 6
264 MarketDepth 1 =Top of Book
1023 | MDPricelLevel 1
346 NumberOfOrders | 1

The message above indicates that there are no orders at the offer side for the instrument, resulting in an empty
Top of Book. This results in the client’s Top of Book order book looking as follows:

Bid Offer
Price | Volume | No. of Orders | Price | Volume | No. of Orders
50 4 1 - - -

Page 56 of 74

8.4.

Price Depth Book

This type of order book contains the best bids and offers for an instrument, aggregated by price. The maximum
number of levels provided for each price order book depends on the multicast group it is disseminated through.

Incremental Refresh messages relevant to the Price Depth order book of an instrument are sent multiple times
during each trading session in order to give the client the information necessary to keep it up to date.

Examples of how to handle the various possible scenarios follow. The scenarios below assume a max Price Depth
of 3 (field “264 = MarketDepth” = 3) for simplicity’s sake, but the same concepts apply for any depth.

8.4.1.

New — Level insertion at the bottom of the book

Consider the following initial state for the client’s Price Depth order book:

Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
1 50 5 2 80 4 1
2 40 2 1 90 6 3
3 - - - 100 5 2
The following message is sent:
Field Value
35 MsgType X = MarketDatalncrementalRefresh
1021 | MDBookType 2 = Price Depth
279 MDUpdateAction | 0 = New
55 Symbol Example Instrument
269 MDEntryType 0 = Bid
270 MDEntryPx 30
271 MDEntrySize 4
264 MarketDepth 3
1023 | MDPricelevel 3
346 NumberOfOrders | 1

The message above indicates a new level at the bottom of the bid side. This results in the client’s Price Depth

order book looking as follows:

Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
1 50 5 2 80 4 1
2 40 2 1 90 6 3
3 30 4 1 100 5 2

Page 57 of 74

8.4.2. New — Level insertion, causing a shift

Consider the following initial state for the client’s Price Depth order book:

Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
1 60 5 2 80 4 1
2 40 7 2 90 6 3
3 30 4 1 - - -

The following message is sent:

Field Value
35 MsgType X = MarketDatalncrementalRefresh
1021 | MDBookType 2 = Price Depth
279 MDUpdateAction | 0= New
55 Symbol Example Instrument
269 MDEntryType 1 = Offer
270 MDEntryPx 85
271 MDEntrySize 2
264 MarketDepth 3
1023 | MDPricelLevel 2
346 NumberOfOrders | 1

The message above indicates the insertion of a new level at position 2 of the offer side. When processing this
message, the client should shift the entry that was previously at this level, as well as all levels below it down by
one level. In this example the entry with Price = 90 is shifted, going from level 2 to 3. This results in the client’s
Price Depth order book looking as follows:

Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
1 60 5 2 80 4 1
2 40 7 2 85 2 1
3 30 4 1 90 6 3

Page 58 of 74

8.4.3.

New — Level insertion, causing the deletion of the last level

Consider the following initial state for the client’s Price Depth order book:

Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
1 60 5 2 80 4 1
2 40 7 2 85 2 1
3 30 4 1 90 6 3
The following message is sent:
Field Value
35 MsgType X = MarketDatalncrementalRefresh
1021 | MDBookType 2 = Price Depth
279 MDUpdateAction | 0= New
55 Symbol Example Instrument
269 MDEntryType 0 = Bid
270 MDEntryPx 35
271 MDEntrySize 3
264 MarketDepth 3
1023 | MDPricelLevel 3
346 NumberOfOrders | 1

The message above indicates the insertion of a new price level at position 3 of the bid side. When processing this
message, the client would shift the entry that was previously at this position, as well as all levels below it down by
one level. In this example the entry with Price = 30 is shifted down by one level, going from 3 to 4, thus exceeding
the max book depth, and as such should be deleted. This results in the client’s Price Depth order book looking as

follows:
Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
Max 1 60 5 2 80 4 1
book depth 2 40 7 2 85 2 1
3 3 35 3 1 90 6 3
Exceeds max depth | 30 4 1
N
Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
1 60 5 2 80 4 1
2 40 7 2 85 2 1
3 35 3 1 90 6 3

Page 59 of 74

8.4.4.

Change — Change of a level’s volume / no. of orders

Consider the following initial state for the client’s Price Depth order book:

Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
1 50 5 2 80 4 1
2 40 2 1 90 6 3
3 30 4 1 - - -
The following message is sent:
Field Value
35 MsgType X = MarketDatalncrementalRefresh
1021 | MDBookType 2 = Price Depth
279 MDUpdateAction | 1 =Change
55 Symbol Example Instrument
269 MDEntryType 0 =Bid
270 MDEntryPx 40
271 MDEntrySize 7
264 MarketDepth 3
1023 | MDPricelLevel 2
346 NumberOfOrders | 2

The message above indicates a change in the volume and no. of orders at level 2 of the bid side. This results in the

client’s Price Depth order book looking as follows:

Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
1 50 5 2 80 4 1
2 40 7 2 90 6 3
3 30 4 1 - - -

Page 60 of 74

8.4.5.

Delete — Level deletion from the bottom of the book

Consider the following initial state for the client’s Price Depth order book:

Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
1 50 5 2 80 4 1
2 40 2 1 90 6 3
3 30 4 1 100 5 2
The following message is sent:
Field Value
35 MsgType X = MarketDatalncrementalRefresh
1021 | MDBookType 2 = Price Depth
279 MDUpdateAction | 2 =Delete
55 Symbol Example Instrument
269 MDEntryType 1 = Offer
270 MDEntryPx 100
271 MDEntrySize 5
264 MarketDepth 3
1023 | MDPricelLevel 3
346 NumberOfOrders | 2

The message above indicates the deletion of a level at the bottom of the offer side. This results in the client’s Price
Depth order book looking as follows:

Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
1 50 5 2 80 4 1
2 40 2 1 90 6 3
3 30 4 1 - - -

Page 61 of 74

8.4.6.

Delete — Level deletion, causing a shift

Consider the following initial state for the client’s Price Depth order book:

Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
1 60 5 2 80 4 1
2 40 7 2 85 2 1
3 30 4 1 90 6 3
The following message is sent:
Field Value
35 MsgType X = MarketDatalncrementalRefresh
1021 | MDBookType 2 = Price Depth
279 MDUpdateAction | 2 =Delete
55 Symbol Example Instrument
269 MDEntryType 0 = Bid
270 MDEntryPx 60
271 MDEntrySize 5
264 MarketDepth 3
1023 | MDPricelLevel 1
346 NumberOfOrders | 2

The message above indicates the deletion of the first level of the bid side. When processing this message, the
client should remove the level and shift all levels below up by one level. In this example levels 2 and 3 are shifted

up by one level. This results in the client’s Price Depth order book looking as follows:

Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
1 - - - 80 4 1
2 40 7 2 85 2 1
3 30 4 1 90 6 3
N2
Bid Offer
Level | Price | Volume | No. of Orders | Price | Volume | No. of Orders
1 40 7 2 80 4 1
2 30 4 1 85 2 1
3 - - - 90 6 3

Page 62 of 74

8.5.

Order Depth Book

This type of order book contains the full order depth for a given instrument. Incremental Refresh messages
relevant to the Order Depth order book of an instrument are sent multiple times during each trading session in
order to give the client the information necessary to keep it up to date.

Examples of how to handle the various possible scenarios follow.

8.5.1.

New — Entry Insertion at the bottom of the book

Consider the following initial state for the client’s Order Depth order book:

The following message is sent:

Bid Offer

Position | Price | Volume | Order ID | Position | Price | Volume | Order ID
1 50 5 105 1 70 4 110
2 50 3 112 2 80 2 102
3 50 2 117 3 80 3 109
4 40 4 101 4 90 4 103
5 30 1 100 5 90 5 120
6 30 7 104

Field Value
35 MsgType X = MarketDatalncrementalRefresh
1021 | MDBookType 3 = Order Depth
279 MDUpdateAction 0 = New
55 Symbol Example Instrument
269 MDEntryType 1 = Offer
270 MDEntryPx 90
271 MDEntrySize 3
290 MDEntryPositionNo | 6
37 OrderID 121

The message above indicates a new order with price 90 at position 6 of the offer side. This results in the client’s
Order Depth order book looking as follows:

Bid Offer
Position | Price | Volume | Order ID | Position | Price | Volume | Order ID
1 50 5 105 1 70 4 110
2 50 3 112 2 80 2 102
3 50 2 117 3 80 3 109
4 40 4 101 4 90 4 103
5 30 1 100 5 90 5 120
6 30 7 104 6 90 3 121

Page 63 of 74

8.5.2.

New — Entry insertion, causing a shift

Consider the following initial state for the client’s Order Depth order book:

Bid Offer

Position | Price | Volume | Order ID | Position | Price | Volume | Order ID
1 50 5 105 1 70 4 110
2 50 3 112 2 80 2 102
3 50 2 117 3 80 3 109
4 40 4 101 4 90 4 103
5 30 1 100 5 90 5 120
6 30 7 104 6 90 3 121

The following message is sent:
Field Value

35 MsgType X = MarketDatalncrementalRefresh

1021 | MDBookType 3 = Order Depth

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType 0 =Bid

270 MDEntryPx 40

271 MDEntrySize 3

290 MDEntryPositionNo | 5

37 OrderID 122

The message above indicates a new order with price 40 at position 5 of the bid side. When processing this
message, the client should shift the entry that was previously at this position, as well as all positions below it by
one. This results in the client’s Order Depth order book looking as follows:

Bid Offer

Position | Price | Volume | Order ID | Position | Price | Volume | Order ID
1 50 5 105 1 70 4 110
2 50 3 112 2 80 2 102
3 50 2 117 3 80 3 109
4 40 4 101 4 90 4 103
5 40 3 122 5 90 5 120
6 30 1 100 6 90 3 121
7 30 7 104

Page 64 of 74

8.5.3.

Change — Change of an entry’s volume

The value “1 = Change” for field “279 = MDUpdateAction” signals a change to an order’s volume. Note that this is
only used when the order’s volume is decreased, as an increase in volume could potentially change the order’s
position and as such would be disseminated by a “3 = Delete” instruction, followed by a “0 = New” instruction.

Consider the following initial state for the client’s Order Depth order book:

The following message is sent:

Bid Offer

Position | Price | Volume | Order ID | Position | Price | Volume | Order ID
1 50 5 105 1 70 4 110
2 50 3 112 2 80 2 102
3 50 2 117 3 80 3 109
4 40 4 101 4 90 4 103
5 40 3 122 5 90 5 120
6 30 1 100 6 90 3 121
7 30 7 104

Field Value
35 MsgType X = MarketDatalncrementalRefresh
1021 | MDBookType 3 = Order Depth
279 MDUpdateAction 1 = Change
55 Symbol Example Instrument
269 MDEntryType 1 = Offer
270 MDEntryPx 80
271 MDEntrySize 2
290 MDEntryPositionNo | 3
37 OrderID 109

The message above indicates a change in volume at position 3 of the offer side. This results in the client’s Order
Depth order book looking as follows:

Bid Offer

Position | Price | Volume | Order ID | Position | Price | Volume | Order ID
1 50 5 105 1 70 4 110
2 50 3 112 2 80 2 102
3 50 2 117 3 80 2 109
4 40 4 101 4 90 4 103
5 40 3 122 5 90 5 120
6 30 1 100 6 90 3 121
7 30 7 104

Page 65 of 74

8.5.4.

Delete — Entry de

letion from the bottom of the book

Consider the following initial state for the client’s Order Depth order book:

The following message is sent:

Bid Offer

Position | Price | Volume | Order ID | Position | Price | Volume | Order ID
1 50 5 105 1 70 4 110
2 50 3 112 2 80 2 102
3 50 2 117 3 80 6 109
4 40 4 101 4 90 4 103
5 40 3 122 5 90 5 120
6 30 1 100 6 90 3 121
7 30 7 104

Field Value
35 MsgType X = MarketDatalncrementalRefresh
1021 | MDBookType 3 = Order Depth
279 MDUpdateAction 2 = Delete
55 Symbol Example Instrument
269 MDEntryType 0 =Bid
270 MDEntryPx 30
271 MDEntrySize 7
290 MDEntryPositionNo | 7
37 OrderID 104

The message above indicates the deletion of the entry at position 7 of the bid side. This results in the client’s Order
Depth order book looking as follows:

Page 66 of 74

Bid Offer
Position | Price | Volume | Order ID | Position | Price | Volume | Order ID
1 50 5 105 1 70 4 110
2 50 3 112 2 80 2 102
3 50 2 117 3 80 6 109
4 40 4 101 4 90 4 103
5 40 3 122 5 90 5 120
6 30 1 100 6 90 3 121
7 - - -
N
Bid Offer
Position | Price | Volume | Order ID | Position | Price | Volume | Order ID
1 50 5 105 1 70 4 110
2 50 3 112 2 80 2 102
3 50 2 117 3 80 6 109
4 40 4 101 4 90 4 103
5 40 3 122 5 90 5 120
6 30 1 100 6 90 3 121
8.5.5. Delete — Entry deletion, causing a shift

Consider the following initial state for the client’s Order Depth order book:

Bid Offer

Position | Price | Volume | Order ID | Position | Price | Volume | Order ID
1 50 5 105 1 70 4 110
2 50 3 112 2 80 2 102
3 50 2 117 3 80 6 109
4 40 4 101 4 90 4 103
5 40 3 122 5 90 5 120
6 30 1 100 6 90 3 121

The following message is sent:
Field Value

35 MsgType X = MarketDatalncrementalRefresh

1021 | MDBookType 3 = Order Depth

279 MDUpdateAction 2 = Delete

55 Symbol Example Instrument

269 MDEntryType 1 = Offer

270 MDEntryPx 90

271 MDEntrySize 4

290 MDEntryPositionNo | 4

37 OrderID 103

Page 67 of 74

The message above indicates a deletion of the entry at position 4 of the offer side. When processing this message,
the client should remove the entry and shift all entries below up by one position. In this example levels 5 and 6
are shifted up by one level. This results in the client’s Order Depth order book looking as follows:

Bid Offer
Position | Price | Volume | Order ID | Position | Price | Volume | Order ID
1 50 5 105 1 70 4 110
2 50 3 112 2 80 2 102
3 50 2 117 3 80 6 109
4 40 4 101 4 90 4 103
5 40 3 122 5 90 5 120
6 30 1 100 6 90 3 121
N
Bid Offer
Position | Price | Volume | Order ID | Position | Price | Volume | Order ID
1 50 5 105 1 70 4 110
2 50 3 112 2 80 2 102
3 50 2 117 3 80 6 109
4 40 4 101 4 90 5 120
5 40 3 122 5 90 3 121
6 30 1 100

8.6. Order Books in Snapshots

The Snapshots received in the various types of multicast groups contain all the required information to construct
the order books for each instrument.

The Snapshot messages follow the same format as the Incremental messages described in the previous sections,
with the following differences:

o The field “35 = MsgType” contains the value “W = MarketDataSnapshotFullRefresh”.
o The field “279 = MDUpdateAction” is absent, all messages are treated as if the value was “0 = New”.
e An “Empty Book” message is contained in Snapshots for instruments with an empty book of that type.

By applying the same methods described in the previous sections and taking into considerations these differences,
a client can construct the instrument’s initial order books by utilizing the snapshots and keep them up to date by
applying the incremental feeds.

Page 68 of 74

9. Market Data Guidelines

This section contains useful information related to the handling of various types of market data received via
Incremental Refresh messages.

9.1. Handling Auction Prices

The following procedure describes the handling of an instrument’s auction prices via Incremental Refresh
messages:

1. An instrument enters an auction/pre-call phase. An “f = SecurityStatus” message with field
“625=TradingSessionSubID” having value “102 = Pre-Call (Auction)” will be sent.

2. Forthe duration of the auction, “X = MarketDatalncrementalRefresh” messages with one repeating group
with field “269=MDEntryType” having value “v = Projected Auction Price” will be sent that contain a
projection of the auction price. These messages have field “279=MDUpdateAction” having value “0 =
New” for the first message and “1 = Change” for all subsequent updates.

3. Oncethe auction concludes, an “f = SecurityStatus” message with field “625=TradingSessionSubID” having
value “2 = Opening (Auction Price is calculated)” will be sent.

4. Subsequently, an “X = MarketDatalncrementalRefresh” message with two repeating groups will be sent:

a. The first repeating group with field “269=MDEntryType” having value “v = Projected Auction
Price” and field “279=MDUpdateAction” having value “2 = Delete” will be sent to signify that the
auction phase has ended and therefore the projected price should be discarded.

b. The second repeating group with field “269=MDEntryType” having value “w = Auction Price” and
field “279=MDUpdateAction” having value “0 = New” will be sent containing the actual auction
price.

5. This process is repeated for all auctions during the trading day, including the opening and closing auctions.
If a price for another auction was sent previously, the first projected price message (described in step 2)
will contain an additional repeating group at the start with field “269=MDEntryType” having value “w =
Auction Price” and field “279=MDUpdateAction” having value “2 = Delete” to signify that a new auction
pre-call phase is starting, and as such the previous auction's price should be discarded.

Page 69 of 74

9.2. Handling Closing Price

The following procedure describes the handling of an instrument’s closing price via Incremental Refresh messages:

1. An instrument enters the closing auction (pre-call) phase. An “f = SecurityStatus” message with field
“625=TradingSessionSubID” having value “102 = Pre-Call (Auction)” will be sent.

2. Forthe duration of the auction, “X = MarketDatalncrementalRefresh” messages with one repeating group
with field “269=MDEntryType” having value “ u = Projected Closing Price” will be sent that contain a
projection of the closing price. These messages have field “279=MDUpdateAction” having value “0 = New”
for the first message and “1 = Change” for all subsequent updates.

3. Oncethe closing auction concludes, an “f = SecurityStatus” message with field “625=TradingSessionSubID”
having value “2 = Opening (Auction Price is calculated)” will be sent.

4. Subsequently, an “X = MarketDatalncrementalRefresh” message two repeating groups will be sent:

a. The first repeating group with field “269=MDEntryType” having value “ u = Projected Closing
Price” and field “279=MDUpdateAction” having value “2 = Delete” will be sent to signify that the
auction phase has ended and therefore the projected closing price should be discarded.

b. The second repeating group with field “269=MDEntryType” having value “ 5 = Closing price” and
field “279=MDUpdateAction” having value “0 = New” will be sent containing the actual closing
price.

Note: An instrument’s closing price is not necessarily equal to its closing auction price, thus projections and prices
for both the closing auction and the closing price itself are sent.

9.3. Bond Volumes

All volume/size fields transmitted by the MDFS for bond instruments (field “20011 = ATHEXSecurityCategory”
having the value “5 = Bond” contain the “raw” volume/size, i.e. it is not pre-multiplied by the bond’s Nominal
Value/Contract Size.

If a client needs these volumes/sizes to be multiplied by the bond’s Nominal Value/Contract Size this must be
applied by the client, by utilizing the “231 = ContractMultiplier” field included in “Start of Day Price” messages for
bonds in the appropriate “General” type groups. The client may multiple any transmitted volume/size by the value
of this field in order to get the desired format.

9.4. APA OTC Trade Reports

The MDFS transmits APA OTC pre-trade and post-trade reports submitted to the exchange in specialized Groups.

Note that all incremental APA OTC messages transmitted via these groups will always have the field “279 =
MDUpdateAction” with the value “0 = New”, even when the message contains an amended or cancelled trade

Page 70 of 74

report. The field “20015 = ATHEXAPAReportStatus” included in these messages must be used instead in order to
determine the status (New, Amend, Cancel) of a trade report.

This is done because APA amendments/cancellations may be submitted to the exchange for trade reports that
were not initially submitted on the same day, and would therefore not be available via the MDFS that day. This
results in inability to use the field “279 = MDUpdateAction” to indicate amendments/cancellations as transmitting
a trade report with field “279 = MDUpdateAction” having with value “1 = Change”/”2 = Delete” without having
transmitted the original trade report with “279 = MDUpdateAction” with the value “0 = New” first, would break
the semantics of the FIX protocol’s “279 = MDUpdateAction” field.

9.5. MiFID Il / MiFIR Review

The data feed provided by MDFS is compliant with the current RTS 1 & RTS 2 MiFID Il / MiFIR regulations. MDFS
follows the Market Model Typology (MMT) that is maintained by the FIX Trading community. The currently
supported MMT version is 5.0 (11-Nov-2025a revision).

Some of the information required by RTS 1/RTS 2, such as ISIN, Price Currency, Price Notation & Quantity
Currency, is available via ATHEX's Reference Data Service (RDS).

Page 71 of 74

https://www.fixtrading.org/mmt/
https://portal.athexgroup.gr/rds

10.

10.1.

Appendix A

Comparison With Legacy IDS Service (IOCP)

The MDFS is intended to completely replace the legacy IDS Service (IOCP).

The main differences between the two systems are:

1.

The way they approach the dissemination of the market data originating from the trading platform.

The IDS Service is at its core a translation of internal messages generated by the trading platform to the
proprietary IDS format messages, more tailored to fit the needs of the clients (exchange members & data
vendors). The client has the option to request retransmission of previously disseminated data in the exact
form it was previously transmitted as.’

In contrast the MDFS is focused on providing fast, up-to-date information on the current state of all the
instruments being traded in the trading platform and on keeping the various order books current. The
messaging protocol is no longer proprietary, but the industry standard FIX / FAST protocol is used.

The incremental / snapshot paradigm.

The IDS service would send redundant and duplicate information on many occasions, as a result of not
following an incremental update approach. Messages would contain information that had already been
transmitted previously, when only a small subset of fields had changed. Clients would also need to have
received the entirety of the market data messages generated during a trading session in order to be up
to date with the current state of the session.

The MDFS by following the incremental update / snapshot approach can minimize the sending of
redundant information and improve the efficiency of the data transmission. In addition, by providing
snapshots, the MDFS offers clients the option to get the current state of the trading session in a fast and
efficient manner, without having to receive and process any past data they may not be interested in.

The networking and architectural paradigms they employ.

The IDS Service uses TCP networking for all communication with the client, this necessitates the existence
of a session protocol (implemented through the I0CP’s Control channel) in addition to the data
transmission channels. This provides reliable transmission but comes with considerable overhead, with

message retransmissions further impacting performance.

The MDFS offers both TCP/IP and UDP multicast as an option for clients, which can utilize each protocol
in accordance with their needs.

Page 72 of 74

The MDFS’ UDP multicast service when combined with FAST message encoding, results in much lower
latency and bandwidth usage. Another benefit of this approach is the lack of a need for a session protocol
as all authentication / authorization is done at the network level, which simultaneously allows for more
granular access to different feed types. It does come with some inherent unreliability due to the nature
of the UDP network protocol, but the MDFS’ architecture has multiple ways to combat this such as the
concurrent A & B Sources, the snapshot recovery mechanism and the TCP/IP retransmission service.

The MDFS’ TCP/IP service can be utilized by clients that favor lower implementation costs, simpler
networking infrastructure and the option to access the service over the internet.

4. The timestamps format they use.
The MDFS follows the FIX Protocol standard of sending all timestamps in UDP and YYYYMMDD-

HH:MM:SS.ssssss format. This is in contrast to the legacy IDS service which sent all timestamps in local
time and YYYYMMDDHHMMSSssssss format.

Those differences result in the MDFS being a much more modern and performant service, that improves the way
clients access the exchange’s market data feed and potentially reduces costs by providing data in an established
and widely used format.

Page 73 of 74

10.2. FAST Template XML Example

The following FAST Template is an example of the format that is used by MDFS to encode & decode FIX messages.
An XML file with templates for all of MDFS’ message types is provided.

<template name="ExampleMessage 34" id="34">
<string name="MsgType" id="35">
<constant value="W"/>
</string>
<uInt32 name="MDBookType" id="1021" presence="optional">
<default />
</ulnt32>
<string name="Symbol" id="55" presence="optional">
<default/>
</string>
<sequence name="MDTestGroup" presence="optional">
<length name="NoMDEntries" id="268">
<default/>
</length>
<uInt32 name="MDPricelLevel" id="1023" presence="optional"”>
<default/>
</ulnt32>
<decimal name="MDEntrySize" id="271" presence="optional">
<default/>
</decimal>
<decimal name="MDEntryPx" id="270" presence="optional">
<default/>
</decimal>
</sequence>
</template>

Page 74 of 74

	Revision History
	Table of Contents
	Table of Figures
	1. Introduction
	2. Architecture Overview
	2.1. Incremental Feed Approach
	2.2. Market Data Groups
	2.3. UDP Multicast Service
	2.4. TCP/IP Service

	3. General Guidelines
	3.1. Handling Incremental & Snapshot Traffic
	3.2. Application Sequence Control
	3.3. Heartbeat Messages
	3.4. Detecting Gaps
	3.5. Snapshot Cycles
	3.6. Updating the Order Book
	3.7. Identifying Duplicate Messages

	4. System Recovery Procedure
	4.1. Identifying Rollbacks
	4.2. Handling Rollbacks
	4.3. Handling Multiple Rollbacks

	5. TCP/IP Service
	5.1. Logon Procedure
	5.2. Updating the Password
	5.3. Sending a Request
	5.3.1. Request Acknowledgement
	5.3.2. Request Rejection (Session-Level validation error)
	5.3.3. Message Encoding

	5.4. FAST Encoded Message Encapsulation
	5.5. Subscribe Request
	5.6. Unsubscribe Request
	5.7. Retransmission Request
	5.7.1. Retransmission Request Report

	5.8. Snapshot Request
	5.8.1. Snapshot Request Report

	5.9. Disconnecting from the Service
	5.10. Heartbeat Messages
	5.11. Differentiating Between Incremental / Snapshots / Retransmissions
	5.12. Initial Connection Procedure
	5.13. Recovery Procedure
	5.14. TCP/IP Service Examples
	5.14.1. Initial Connection Procedure using TCP/IP Snapshot
	5.14.2. Initial Connection Procedure using TCP/IP Retransmission
	5.14.3. Different Heartbeat Types
	5.14.4. Multiple Market Data Groups via a Single FIX Session
	5.14.5. Multiple Traffic Types via a Single FIX Session

	6. UDP Multicast Service
	6.1. Handling Data Feeds on Sources A & B
	6.2. Handling Gaps in Message Sequence Numbers
	6.3. Differentiating Between Incremental / Snapshots / Retransmissions
	6.4. Initial Connection Procedure
	6.5. Recovery Procedure
	6.6. Multicast Service Examples
	6.6.1. Initial Connection Procedure using UDP Multicast Snapshot
	6.6.2. Initial Connection Procedure using TCP/IP Snapshot
	6.6.3. Initial Connection Procedure using TCP/IP Retransmission

	7. FAST Message Encoding
	7.1. Template Versioning
	7.2. Packet Structure
	7.3. Data Types
	7.4. Templates & Implicit Tagging
	7.5. Mandatory and Optional Fields
	7.6. Field Operators
	7.7. Presence Map (PMAP)
	7.8. Stop Bit Encoding
	7.9. Binary Encoding
	7.10. Decoding Overview
	7.11. Decoding Example
	7.12. Partial Decoding

	8. Order Book Handling
	8.1. Market/Stop/ATO/ATC orders
	8.1.1. Order Depth Book
	8.1.2. Top of Book/Price Depth Book

	8.2. Empty Book
	8.3. Top of Book
	8.3.1. New – Addition to an empty side
	8.3.2. Change – Change of volume / no. of orders
	8.3.3. Delete – A side becomes empty

	8.4. Price Depth Book
	8.4.1. New – Level insertion at the bottom of the book
	8.4.2. New – Level insertion, causing a shift
	8.4.3. New – Level insertion, causing the deletion of the last level
	8.4.4. Change – Change of a level’s volume / no. of orders
	8.4.5. Delete – Level deletion from the bottom of the book
	8.4.6. Delete – Level deletion, causing a shift

	8.5. Order Depth Book
	8.5.1. New – Entry Insertion at the bottom of the book
	8.5.2. New – Entry insertion, causing a shift
	8.5.3. Change – Change of an entry’s volume
	8.5.4. Delete – Entry deletion from the bottom of the book
	8.5.5. Delete – Entry deletion, causing a shift

	8.6. Order Books in Snapshots

	9. Market Data Guidelines
	9.1. Handling Auction Prices
	9.2. Handling Closing Price
	9.3. Bond Volumes
	9.4. APA OTC Trade Reports
	9.5. MiFID II / MiFIR Review

	10. Appendix A
	10.1. Comparison With Legacy IDS Service (IOCP)
	10.2. FAST Template XML Example

