

IT Development Division

Trading Systems Development Department

OASIS MDFS Specification

Version: 2.2

Page 2 of 74

Revision History

Version Date Description

1.0 2025/02/24 Multicast release.

2.0 2025/06/16 TCP & APA release.
1. Updated section “4.10. Decoding Example”, field “268 = NoMDEntries”

changed from mandatory to optional.
2. Updated sections “1. Introduction” & “2. Architecture Overview” to reflect

the new TCP/IP functionality.
3. Added comparison of UDP Multicast and TCP/IP services in section 2.

Architecture Overview”.
4. Removed section “3. Connection Procedure & Data Flow”, moved part
5. Added section “3. General Guidelines” which includes parts of the now

removed “3. Connection Procedure & Data Flow” section.
6. Added Section “4. TCP/IP Service”.
7. Added Section “5. UDP Multicast Service” which contains parts of the now

removed “3. Connection Procedure & Data Flow” section.
8. Added note in section “6. FAST Message Encoding”.
9. Updated section “9.1 Comparison With Legacy IDS Service (IOCP)”.
10. Added section “6.1 Template Versioning”.

11. Added section “6.12 Partial Decoding”.

12. Renamed section “8. Instrument Prices Handling” to “8. Market Data

Guidelines”.

13. Added sections “8.3. Bond Volumes” and “8.4. APA OTC Trade Reports”.
14. Updated section “7.1.2. Top of Book/Price Depth Book” for Market/ATO/OTC

prices handling.
15. Updated language throughout the document for clarity/uniformity.

2.1 2025/09/16 1. Updated section “4. TCP/IP Service”.

2.1.1 2025/09/18 1. Updated section “6.12. Partial Decoding”.

2.2 2025/12/02 1. Added section “4. Recovery Procedure”.
2. Added section “3.7. Identifying Duplicate Messages”.
3. Updated section “6.1. Handling Data Feeds on Sources A & B”.
4. Updated section “7.12. Partial Decoding”.
5. Added section “9.5. MiFID II / MiFIR Review”.

Page 3 of 74

Table of Contents

Revision History ..2

Table of Contents ...3

Table of Figures ..7

1. Introduction ..8

2. Architecture Overview ..9

2.1. Incremental Feed Approach ... 10

2.2. Market Data Groups ... 10

2.3. UDP Multicast Service .. 13

2.4. TCP/IP Service .. 13

3. General Guidelines .. 14

3.1. Handling Incremental & Snapshot Traffic .. 14

3.2. Application Sequence Control .. 14

3.3. Heartbeat Messages .. 14

3.4. Detecting Gaps ... 15

3.5. Snapshot Cycles .. 15

3.6. Updating the Order Book ... 16

3.7. Identifying Duplicate Messages ... 16

4. System Recovery Procedure .. 17

4.1. Identifying Rollbacks .. 17

4.2. Handling Rollbacks ... 17

4.3. Handling Multiple Rollbacks ... 19

5. TCP/IP Service .. 20

5.1. Logon Procedure .. 20

5.2. Updating the Password .. 21

5.3. Sending a Request .. 21

 Request Acknowledgement .. 22

 Request Rejection (Session-Level validation error) ... 23

 Message Encoding ... 23

5.4. FAST Encoded Message Encapsulation .. 23

5.5. Subscribe Request .. 24

5.6. Unsubscribe Request ... 24

Page 4 of 74

5.7. Retransmission Request ... 25

 Retransmission Request Report .. 25

5.8. Snapshot Request .. 25

 Snapshot Request Report .. 26

5.9. Disconnecting from the Service ... 26

5.10. Heartbeat Messages .. 26

5.11. Differentiating Between Incremental / Snapshots / Retransmissions ... 27

5.12. Initial Connection Procedure ... 27

5.13. Recovery Procedure ... 29

5.14. TCP/IP Service Examples .. 30

 Initial Connection Procedure using TCP/IP Snapshot .. 30

 Initial Connection Procedure using TCP/IP Retransmission .. 32

 Different Heartbeat Types ... 33

 Multiple Market Data Groups via a Single FIX Session .. 34

 Multiple Traffic Types via a Single FIX Session .. 34

6. UDP Multicast Service ... 35

6.1. Handling Data Feeds on Sources A & B .. 35

6.2. Handling Gaps in Message Sequence Numbers ... 36

6.3. Differentiating Between Incremental / Snapshots / Retransmissions ... 36

6.4. Initial Connection Procedure ... 37

6.5. Recovery Procedure ... 39

6.6. Multicast Service Examples .. 41

 Initial Connection Procedure using UDP Multicast Snapshot ... 41

 Initial Connection Procedure using TCP/IP Snapshot .. 42

 Initial Connection Procedure using TCP/IP Retransmission .. 44

7. FAST Message Encoding .. 45

7.1. Template Versioning .. 46

7.2. Packet Structure ... 47

7.3. Data Types .. 47

7.4. Templates & Implicit Tagging ... 48

7.5. Mandatory and Optional Fields ... 48

7.6. Field Operators... 48

7.7. Presence Map (PMAP) ... 49

Page 5 of 74

7.8. Stop Bit Encoding ... 49

7.9. Binary Encoding .. 49

7.10. Decoding Overview .. 49

7.11. Decoding Example .. 50

7.12. Partial Decoding ... 51

8. Order Book Handling ... 52

8.1. Market/Stop/ATO/ATC orders ... 53

 Order Depth Book ... 53

 Top of Book/Price Depth Book .. 53

8.2. Empty Book .. 53

8.3. Top of Book .. 54

 New – Addition to an empty side .. 54

 Change – Change of volume / no. of orders.. 55

 Delete – A side becomes empty .. 56

8.4. Price Depth Book .. 57

 New – Level insertion at the bottom of the book ... 57

 New – Level insertion, causing a shift ... 58

 New – Level insertion, causing the deletion of the last level .. 59

 Change – Change of a level’s volume / no. of orders .. 60

 Delete – Level deletion from the bottom of the book .. 61

 Delete – Level deletion, causing a shift ... 62

8.5. Order Depth Book .. 63

 New – Entry Insertion at the bottom of the book ... 63

 New – Entry insertion, causing a shift ... 64

 Change – Change of an entry’s volume ... 65

 Delete – Entry deletion from the bottom of the book .. 66

 Delete – Entry deletion, causing a shift ... 67

8.6. Order Books in Snapshots .. 68

9. Market Data Guidelines ... 69

9.1. Handling Auction Prices ... 69

9.2. Handling Closing Price .. 70

9.3. Bond Volumes .. 70

9.4. APA OTC Trade Reports.. 70

Page 6 of 74

9.5. MiFID II / MiFIR Review .. 71

10. Appendix A ... 72

10.1. Comparison With Legacy IDS Service (IOCP) .. 72

10.2. FAST Template XML Example ... 74

Page 7 of 74

Table of Figures

Figure 1 - Architecture Overview ...9
Figure 2 - Incremental Groups ... 10
Figure 3 - Snapshot Groups ... 11
Figure 4 - Instrument Type Groupings ... 11
Figure 5 - Messages per Group type.. 12
Figure 6 - Handling Rollbacks Example .. 18
Figure 7 - Handling Multiple Rollbacks Example ... 19
Figure 8 - Initial Connection Procedure using TCP/IP Snapshot .. 31
Figure 9 - Initial Connection Procedure using TCP/IP Retransmission .. 32
Figure 10 - Different Heartbeat Types ... 33
Figure 11 - Multiple Market Data Groups via a Single FIX Session .. 34
Figure 12 - Multiple Traffic Types via a Single FIX Session .. 34
Figure 13 - Sources A & B Example .. 35
Figure 14 - Handling Message Sequence Gaps .. 36
Figure 15 - Initial Connection Procedure using UDP Multicast Snapshot ... 41
Figure 16 - Initial Connection Procedure using TCP/IP Snapshot .. 43
Figure 17 - Initial Connection Procedure using TCP/IP Retransmission .. 44
Figure 18 - FAST Packet Structure ... 47
Figure 19 - FAST Decoding Example .. 50

Page 8 of 74

1. Introduction

The ATHEX Market Data Feed Service (MDFS) provides real time, trading data feed information for all instruments

traded on the OASIS platform, as well as APA OTC Pre-Trade and Post-Trade reports.

MDFS provides data using the Financial Information eXchange (FIX) Protocol which is a technical specification that

is owned, maintained, and developed through the collaborative efforts of FIX Trading Community. More

specifically the data format follows the FIX 5.0 SP2 specification and the data is encoded according to the FAST 1.2

specification. Some messages, fields, tags and tag values from FIX Extension Packs to the FIX 5.0 SP2 specification

are utilized in MDFS messages.

The FIX protocol is an industry standard used by institutions, market participants and vendors worldwide. It

facilitates the streamlined, open, and adaptable exchange of information between counterparties and is used in

multiple aspects of trading, including the dissemination of market data (such as that served by MDFS).

The FAST encoding method is a binary encoding method for message-oriented data streams that aims to be space

and processing efficient. It reduces the size of a data stream by removing redundant data and serializing of the

remaining data through binary encoding, self-describing field lengths and bit maps indicating the presence or

absence of fields. FAST encoding is widely used by institutions serving market data to reduce the data stream size

and remove unnecessary overhead, allowing for reduced latency and bandwidth consumption.

MDFS delivers market data by implementing an incremental / snapshot message approach that is outlined by the

FIX Trading Community, using either UDP multicast or TCP/IP as the network transport protocol. This approach

enables a rich and performant market data feed with minimal latency.

Throughout this document there are distinct sections for UDP and TCP/IP clients. UDP clients may/should make

use of certain TCP/IP features, for this reason most TCP/IP sections are relevant to all clients.

A brief comparison to the legacy IDS Service (IOCP) can be found in Appendix A.

https://www.fixtrading.org/
https://www.fixtrading.org/standards/fix-5-0-sp-2/
https://www.fixtrading.org/standards/fast/
https://www.fixtrading.org/extension-packs/
https://www.fixtrading.org/standards/fix-5-0-sp-2/

Page 9 of 74

2. Architecture Overview

MDFS offers both UDP multicast and TCP/IP for the dissemination of market data to clients. Each client can opt to

utilize either service, according to their specific need. Identical content is available via either protocol and all

market data received is interoperable. The main features of each network transfer layer are as follows:

UDP Multicast:

• Lower latency due to less protocol overhead.

• Available via leased line only.

• Higher implementation cost due to need for specialized networking infrastructure.

• More complex networking configuration.

• Guaranteed fairness in transmission.

• Possibility of packet loss, although the MDFS ensures data consistency and availability, through using

concurrent Sources (A & B), the Snapshot functionality and the TCP/IP retransmission service.

• Data is sent in FAST encoded format.

• No need to implement the FIX session protocol, unless the TCP/IP retransmission service is utilized.

TCP/IP:

• Lower implementation cost. No need for specialized networking infrastructure.

• Less complex networking configuration.

• More resilient to packet loss, as the protocol handles retransmission of lost packets implicitly.

• Increased latency due to protocol overhead.

• Available via internet or lease lines.

• Data is sent in either FIX or FAST encoded format.

• Need to implement the FIX session protocol.

The following sections will describe the core concepts of the MDFS, as well as each service in depth.

Figure 1 - Architecture Overview

Page 10 of 74

2.1. Incremental Feed Approach

The MDFS follows the paradigm of incremental data feed messages, as outlined by the FIX Trading guideline. This

approach relies on an initial/current state of all instruments included in the data feed and subsequent incremental

messages to keep that state up to date throughout the trading session. The Snapshot functionality can be utilized

to receive the current state with minimal processing, or the Retransmission functionality can be utilized to

construct the current state, along with all previous data for the trading session.

By utilizing this paradigm, the MDFS achieves lower bandwidth consumption and uses a minimal number of

instructions to update the instruments’ order books.

2.2. Market Data Groups

The MDFS disseminates market data that organized into different groups, with each group receiving messages

pertaining to specific Venues, Instrument Types, and message types. Each group has an Incremental feed and a

Snapshot feed. The following tables are an example of how these groups are organized:

Venue
Instrument

Type
Group Type Venue

Instrument
Type

Group Type

Venue
1

Cash
&

Index

General Incremental

Venue 2

Cash
&

Index

General Incremental

Order Depth Incremental Order Depth Incremental

Top of Book Incremental Top of Book Incremental

Price Depth 5 Incremental Price Depth 5 Incremental

Price Depth 10
Incremental

Price Depth 10
Incremental

Trades Incremental Trades Incremental

Bonds

General Incremental

Bonds

General Incremental

Order Depth Incremental Order Depth Incremental

Top of Book Incremental Top of Book Incremental

Price Depth 5 Incremental Price Depth 5 Incremental

Price Depth 10
Incremental

Price Depth 10
Incremental

Trades Incremental Trades Incremental

Derivatives

General Incremental

Derivatives

General Incremental

Order Depth Incremental Order Depth Incremental

Top of Book Incremental Top of Book Incremental

Price Depth 5 Incremental Price Depth 5 Incremental

Price Depth 10
Incremental

Price Depth 10
Incremental

Trades Incremental Trades Incremental
Figure 2 - Incremental Groups

Page 11 of 74

Venue Instrument Type Group Type Venue
Instrument

Type
Group Type

Venue
1

Cash
&

Index

General Snapshots

Venue 2

Cash
&

Index

General Snapshots

Order Depth Snapshots Order Depth Snapshots

Top of Book Snapshots Top of Book Snapshots

Price Depth 5 Snapshots Price Depth 5 Snapshots

Price Depth 10 Snapshots Price Depth 10 Snapshots

Trades Snapshots Trades Snapshots

Bonds

General Snapshots

Bonds

General Snapshots

Order Depth Snapshots Order Depth Snapshots

Top of Book Snapshots Top of Book Snapshots

Price Depth 5 Snapshots Price Depth 5 Snapshots

Price Depth 10 Snapshots Price Depth 10 Snapshots

Trades Snapshots Trades Snapshots

Derivatives

General Snapshots

Derivatives

General Snapshots

Order Depth Snapshots Order Depth Snapshots

Top of Book Snapshots Top of Book Snapshots

Price Depth 5 Snapshots Price Depth 5 Snapshots

Price Depth 10 Snapshots Price Depth 10 Snapshots

Trades Snapshots Trades Snapshots
Figure 3 - Snapshot Groups

The association of the Instrument Type groupings in the tables above with the value of FIX field “20011=

ATHEXSecurityCategory” can be seen in the following table:

Instrument Type Grouping Value of FIX Field “20011= ATHEXSecurityCategory”

Cash & Index 0 = Stock / Rights
1 = ETF
2 = Warrant
3 = Stock Index
4 = ETF Indicative Net Asset Value (INAV)

Bonds 5 = Bond

Derivatives 6 = Option
7 = Future
8 = Repo
9 = Standard Combination

Figure 4 - Instrument Type Groupings

Page 12 of 74

An overview of the messages sent via each Group type can be seen on the following table:

Group Type Messages

General
General Snapshots

Security Status
Trading Session Status
News
Index Value
Closing Price
Start of Day Price
High/Low Limit Modification
Instrument Summary
Auction Price

Order Depth
Order Depth Snapshots

Empty Book
Order Depth Update

Top of Book
Top of Book Snapshots

Empty Book
Top of Book Update

Price Depth 5
Price Depth 5 Snapshots

Empty Book
Price Depth Update (Up to 5 levels)

Price Depth 10
Price Depth 10 Snapshots

Empty Book
Price Depth Update (Up to 10 levels)

Trades
Trades Snapshots

Trade

Figure 5 - Messages per Group type

The details for all message types are available in the “OASIS MDFS - Message Reference” document.

There may also exist some groups which do not follow the general structure described in the tables above, the

details of which will be made available through other means.

Page 13 of 74

2.3. UDP Multicast Service

Each Market Data Group described in the previous section is served by a multicast group to a specific IP Address

& UDP Port combination. All Incremental multicast groups are transmitted via the UDP port 10000, and all

Snapshot multicast groups are transmitted via the UDP port 20000. Each client connects to multiple feeds that

disseminate information relevant to them.

The MDFS replicates all feeds on two identical Sources (A & B). This is done to combat the inherent unreliability

of the UDP protocol, where the delivery of data packets is not guaranteed resulting in the possibility of lost

packets. Although such events are highly improbable for colocation clients, it is strongly recommended that clients

connect to both Sources at all times for redundancy.

Clients connected to the UDP Multicast Service may/should utilize TCP/IP Service functionalities. For this reason,

most TCP/IP sections in this document are relevant to all clients.

2.4. TCP/IP Service

The TCP/IP Service provides the following options:

1. Subscription to receive real-time data from a group.

2. Request a snapshot from a group.

3. Request for retransmission of a range of messages from a group.

Clients connected to the UDP Multicast Service can also utilize options 2 & 3 (snapshots and retransmission) for

synchronization / recovery reasons.

Page 14 of 74

3. General Guidelines

The following sections cover the general guidelines that should be followed when connecting to either the UDP

Multicast Service or the TCP/IP Service. Sections dedicated to the specifics of each service are also included.

3.1. Handling Incremental & Snapshot Traffic

All messages received via Incremental and Snapshot feeds will contain the field “1180 = ApplID” this field will

contain the group’s name (e.g. XATH_CASH_GENERAL) and the “_INCR” or “_SNAP” suffix respectively.

The “_INCR” or “_SNAP” suffixes can be used to differentiate Incremental and Snapshot traffic.

To associate an Incremental feed with the corresponding Snapshot feed, the last five characters of field “1180 =

ApplID” should be removed, effectively removing “_INCR” or “_SNAP” suffixes.

3.2. Application Sequence Control

The “Application Sequence Control” (ApplSeqCtrl) component is a FIX component (a collection of fields) that

appears in all Market Data messages and Heartbeats, after the header component.

It is comprised of two fields:

• “1180 = ApplID”: Used to identify each group. Is comprised of the group’s name and the “_INCR” or

“_SNAP” suffix (e.g. XATH_CASH_GENERAL_INCR, XATH_CASH_GENERAL_SNAP).

• “1181 = ApplSeqNum”: Sequence number per group. Will always be “0” for heartbeats.

These fields are critical for identifying which group the message belongs to and for detecting gaps in that group.

3.3. Heartbeat Messages

MDFS will transmit a heartbeat message for an incremental group if no data has been sent for 30 seconds as a

keep-alive mechanism. A client will receive a heartbeat for each incremental group they are receiving data for.

Heartbeat messages are not sent for Snapshot groups.

A heartbeat message has field “35 = MsgType” with a value of “0 = Heartbeat” and contains the field “369 =

LastMsgSeqNumProcessed”.

The field “369 = LastMsgSeqNumProcessed” contains the value of field “1181 = ApplSeqNum” of the last message

sent in that group. This is used for detecting possible gaps in received messages.

Page 15 of 74

A value of “0” in field “369 = LastMsgSeqNumProcessed” indicates that no messages have been sent for that group

yet.

3.4. Detecting Gaps

It is crucial for a client to detect any gaps in the data received by MDFS, as all information is disseminated using

an incremental approach, thus processing any message without having successfully processed all previous

messages will lead to an incorrect state.

For each group (identified by the value of field “1180 = ApplID”) a gap can be detected in the following ways:

• Two consecutive messages (excluding heartbeats, which are covered below) are received for that group

with non-contiguous values in field “1181 = ApplSeqNum”.

• A heartbeat message is received for a group with a value in field “369 = LastMsgSeqNumProcessed” that

is not contiguous with the value of “1181 = ApplSeqNum” of the last non-heartbeat message received for

that group.

If a gap is detected, the client should suspend all processing and initiate one of the available recovery procedures

(covered in their respective sections for the TCP/IP Service and the UDP Multicast Service) in order to synchronize

with MDFS.

3.5. Snapshot Cycles

Every 1 minute a Snapshot Cycle is generated for each group. A Snapshot Cycle is a collection of messages that

contain the current state of the instruments and markets that belong to that group.

For the information contained in a Snapshot Cycle to be valid, the full cycle needs to be processed in sequential

order. Messages from two different Snapshot Cycles should not be used to determine the current state of a group.

Each message in a Snapshot Cycle contains the field “20009 = ATHEXSnapshotIndicator”, with possible values of:

“0 = Start of cycle”, “1 = End of cycle” and “2 = Start and end of cycle (applies when the cycle is comprised of a

single message)”.

Each message in a Snapshot Cycle also contains the field “369 = LastMsgSeqNumProcessed” which indicates which

incremental message was the last one sent when this cycle was generated. This relates snapshot to incremental

messages, effectively meaning that the cycle contains information up to and including that incremental message.

A Snapshot Cycle is considered “complete” when a message with “20009 = ATHEXSnapshotIndicator” having a

value of “0 = Start of cycle” is received and a message having a value of “1 = End of cycle” is received afterwards,

or if a single message with value “2 = Start and end of cycle (applies when the cycle is comprised of a single

message)” is received. Any messages in between the start and end of the cycle should have contiguous sequence

numbers (field “1181 = ApplSeqNum”). If any gap is detected the cycle is unusable and the client need to discard

all messages for that cycle and wait to receive the next cycle when it is transmitted.

Page 16 of 74

3.6. Updating the Order Book

As long as the values of field “1181 = ApplSeqNum” in the messages received from the incremental feed are

contiguous, the client should keep processing them and applying them to the corresponding order book.

3.7. Identifying Duplicate Messages

Two messages are considered identical if they have the same value in field “1180 = ApplID”, “1181 =

ApplSeqNum” and the same entries in the ATHEXRecoveryGrp repeating group (used for MDFS System

Recovery).

If a client has received two messages that fulfill the criteria mentioned above, they can safely discard one of

them.

Page 17 of 74

4. System Recovery Procedure

Under certain circumstances the MDFS may enter a recovery mode, rolling back to a previous state. This may be

caused by a critical malfunction in the MDFS or elsewhere in the OASIS platform. In the event of this happening,

the client must be able to identify that the rollback in market data took place and handle it gracefully. The

following sections cover the MDFS’ recovery mechanism and include instructions for market data recipients on

how to handle this scenario.

4.1. Identifying Rollbacks

After a system recovery takes place, all subsequent incremental and heartbeat messages sent by MDFS will

contain in the message header the FIX repeating group ATHEXRecoveryGrp, with field "20028 =

NoATHEXRecoverySeqNums" containing the number of rollbacks that have taken place in that trading session.

Presence of this repeating group indicates that the group this message belongs to (i.e. "1180 = ApplID") must be

reset to a previous state.

Each instance of the repeating group contains field “20029 = ATHEXRecoverySeqNum” indicating the sequence

number of the message (i.e. "1181 = ApplSeqNum") that the client must roll back to for that market data group

(inclusive). Multiple instances of the repeating group mean that multiple rollbacks have occurred during the

trading session, which must be handled sequentially by the client.

4.2. Handling Rollbacks

In the event of an MDFS recovery, assuming it is the first rollback that takes place for the trading session,

messages containing the field "20028 = NoATHEXRecoverySeqNums" with a value of “1” will be sent.

For each market data group, when a client receives a message containing the ATHEXRecoveryGrp repeating

group, they have the following options:

1. Completely reset the group’s state, discarding all previously received messages. This can be achieved by:

a. Receiving a snapshot cycle and overwriting the group’s state with the data contained in the

snapshot cycle.

b. Discarding the existing state and asking for a retransmission up to the sequence number

contained in field “20029 = ATHEXRecoverySeqNum”.

2. Roll back the group’s state to the sequence number indicated by field “20029 =

ATHEXRecoverySeqNum”.

Page 18 of 74

Notes:

• The client must keep track of the sequence numbers they have already performed a rollback for, as the

ATHEXRecoveryGrp group will be present in all messages sent after the point of a rollback. Failure to do

so may result in infinite loops or corrupt group state. A rollback for each sequence number included in

the repeating group must only be performed once.

• In case the client has unprocessed messages buffered upon receiving the first message containing a

specific instance of the ATHEXRecoveryGrp repeating group, they must discard them as they may have

been received before the rollback took place, thus containing data that is no longer valid. For example, if

a client receives a message containing an instance of the repeating group with field “20029 =

ATHEXRecoverySeqNum” having the value of “1000”, while having buffered messages with field "1181 =

ApplSeqNum" having values from 1100 to 1500, they must discard those unprocessed messages.

• Any retransmissions / snapshot cycles received after a rollback takes place will contain the correct

messages/state.

• Only incremental and heartbeat messages sent after each rollback point will have a new entry in the

ATHEXRecoveryGrp repeating group.

Example:

Message Note

"1181 = ApplSeqNum" = 100

"1181 = ApplSeqNum" = 101

…

"1181 = ApplSeqNum" = 200

MDFS System Recovery takes place

"1181 = ApplSeqNum" = 101
"20028 = NoATHEXRecoverySeqNums" = 1
"20029 = ATHEXRecoverySeqNum” = 100

The first message indicating a rollback is received. The client
must follow the steps described above to return to a valid state
for the group (i.e. they should either completely restore the
group’s state, or discard messages with "1181 = ApplSeqNum"
having values from 101 to 200).

"1181 = ApplSeqNum" = 102
"20028 = NoATHEXRecoverySeqNums" = 1
"20029 = ATHEXRecoverySeqNum” = 100

Each message following a rollback will contain the
ATHEXRecoveryGrp repeating group.

…
Figure 6 - Handling Rollbacks Example

Page 19 of 74

4.3. Handling Multiple Rollbacks

In the unlikely scenario where multiple MDFS rollbacks take place, the ATHEXRecoveryGrp repeating group will

contain multiple instances of the "20029 = ATHEXRecoverySeqNum" field, the number of which is contained in

the "20028 = NoATHEXRecoverySeqNums" field.

The client must handle each rollback in sequence, as described in the previous section, taking care to track

which sequence numbers they have already handled the recovery procedure for.

Example:

Message Note

"1181 = ApplSeqNum" = 100

"1181 = ApplSeqNum" = 101

…

"1181 = ApplSeqNum" = 200

MDFS System Recovery takes place

"1181 = ApplSeqNum" = 101
"20028 = NoATHEXRecoverySeqNums" = 1
"20029 = ATHEXRecoverySeqNum” = 100

The first message indicating a rollback is received. The client
must follow the steps described above to return to a valid state
for the group (i.e. they should either completely restore the
group’s state, or discard messages with "1181 = ApplSeqNum"
having values from 101 to 200).

"1181 = ApplSeqNum" = 102
"20028 = NoATHEXRecoverySeqNums" = 1
"20029 = ATHEXRecoverySeqNum” = 100

Each message following a rollback will contain the
ATHEXRecoveryGrp repeating group.

…

"1181 = ApplSeqNum" = 300
"20028 = NoATHEXRecoverySeqNums" = 1
"20029 = ATHEXRecoverySeqNum” = 100

…

"1181 = ApplSeqNum" = 500
"20028 = NoATHEXRecoverySeqNums" = 1
"20029 = ATHEXRecoverySeqNum” = 100

MDFS System Recovery takes place

"1181 = ApplSeqNum" = 301
"20028 = NoATHEXRecoverySeqNums" = 2
"20029 = ATHEXRecoverySeqNum” = 100
"20029 = ATHEXRecoverySeqNum” = 300

A second message indicating a rollback is received. The client
must follow the steps described above to return to a valid state
for the group (i.e. they should either completely restore the
group’s state, or discard messages with "1181 = ApplSeqNum"
having values from 300 to 500).

"1181 = ApplSeqNum" = 302
"20028 = NoATHEXRecoverySeqNums" = 2
"20029 = ATHEXRecoverySeqNum” = 100
"20029 = ATHEXRecoverySeqNum” = 300

…
Figure 7 - Handling Multiple Rollbacks Example

Page 20 of 74

5. TCP/IP Service

This section provides information related to the TCP/IP Service of the MDFS. A client utilizes a single session for

all market data groups and requests (subscription to Incremental Feeds, Snapshots, Retransmission).

Notes:

• Each MDFS account corresponds to one FIX session with each MDFS Source at its designated port. A client

may utilize multiple concurrent sessions if they utilize multiple MDFS accounts. A client may also use the

same MDFS account to connect to multiple MDFS Sources concurrently.

• TCP/IP FIX sessions use TLS/SSL encryption. To establish an SSL connection with the MDFS TLS v1.3 is

recommended.

• FIX session messages with field “35 = MsgType” having value “4 = SequenceReset”/ 1 = TestRequest” are

supported by the MDFS and follow the standard FIX specification. Their functionality will not be covered

in this document.

• Standard FIX resend functionality by using session messages with field “35 = MsgType” having value “2 =

ResendRequest” is not supported by the MDFS. Instead, upon receiving a valid ResendRequest the MDFS

will reply with a sequence reset message (“35 = MsgType” with value “4 = SequenceReset”) to perform a

gap fill and synchronize with the client. In case of an invalid ResendRequest the MDFS will reply with a

rejection message (“35 = MsgType” with value “3 = Reject”).

5.1. Logon Procedure

After establishing a TCP/IP connection, an “A = Logon” message must be sent containing the correct credential

fields, “553 = Username” and “554 = Password”.

If this is the first time a client is connecting to the MDFS, the password will be the default one, and the client will

have to update it upon logon using the “925 = NewPassword” field.

Logon attempts may be rejected for the following reasons:

• Provided credentials are incorrect.

• Client has another active TCP/IP connection on the particular MDFS Source (only one connection per

account is allowed).

• Client has not changed the default password.

• New password does not fulfill the minimum password requirements.

If a TCP/IP session is opened and a Logon message is not sent within 30 seconds, the MDFS will terminate the

connection.

Page 21 of 74

5.2. Updating the Password

When updating a client's password, the change will take place immediately on the MDFS Source it was requested

from and will take effect on all other MDFS Sources the next trading day.

If a client wishes to alter passwords on multiple MDFS Sources on the same day, it is important to use the same

“925 = NewPassword” on all Sources. Otherwise, the last updated password will be effective on all MDFS Sources

the next day.

Minimum Requirements

Passwords must be at least 12 characters long and contain at least one of each: uppercase letters, lowercase

letters, numbers, and special characters.

5.3. Sending a Request

After a client is logged in, they can send requests via “BW = ApplicationMessageRequest” messages. Field “1347

= ApplicationRequestType” is used to specify the desired action, with acceptable values being:

• 0 = Retransmission of application messages for the specified Applications

• 1 = Subscription to the specified Applications

• 4 = Unsubscribe to the specified Applications

• 100 = Snapshot for the specified Applications

Each request type is covered in the following sections.

Whenever a client sends a “BW = ApplicationMessageRequest message, they will receive either a “3 = Reject” (for

Session-Level validation errors) or a “BX = ApplicationMessageRequestAck” message as a response.

It is the client’s responsibility to send unique (for each day) values for field “1346 = ApplReqID”, which are used

by the exchange to identify Retransmission Requests.

Notes:

• Each “BW = ApplicationMessageRequest” message pertains to a single group. One cannot make requests

for multiple groups using a single “BW = ApplicationMessageRequest” message.

• There is no limitation on the number of requests the client can make in a single FIX session, or day.

• The client can request concurrent retransmissions for multiple groups.

Page 22 of 74

 Request Acknowledgement

A “BX = ApplicationMessageRequestAck” message will be sent for either successful or rejected application

message requests. The possible values for field “1348 = ApplicationResponseType” are:

• “0 = SuccessfullyProcessed”

• “1 = ApplicationNotExist”

• “2 = MessagesNotAvailable”

• “100 = UserNotAuthorized”

In the case of a successful request the “BX = ApplicationMessageRequestAck” message will contain field “1348 =

ApplicationResponseType” with the value “0 = SuccessfullyProcessed” and field “58 = Text” confirming the

requested action. MDFS will then proceed to perform the requested action.

In case of a rejected request the “BX = ApplicationMessageRequestAck” message will contain field “1348 =

ApplicationResponseType” with one of the remaining values which indicate an error, and the value “58 = Text”

field will contain a detailed reason specifying why the request was not accepted.

Note that the contents of the “58 = Text” field are subject to change, so clients should not rely on parsing the

rejection text for implementing application logic.

Acknowledgement Examples:

Field 1348 =
ApplicationResponseType

Field 58 = Text

0 = SuccessfullyProcessed Accepted Retransmission request for Group: [XATH_CASH_GENERAL],
Encoding: FIX

1 = ApplicationNotExist Group [XATH_CASH_GENERAL] does not exist

2 = MessagesNotAvailable Group [XATH_CASH_GENERAL] is in recovery mode.

2 = MessagesNotAvailable ApplBegSeqNum<1182> cannot be 0.

2 = MessagesNotAvailable ApplBegSeqNum<1182> exceeds number of sent messages for group.

2 = MessagesNotAvailable ApplEndSeqNum<1183> exceeds number of sent messages for group.

2 = MessagesNotAvailable ApplEndSeqNum<1183> must be equal or greater than
ApplBegSeqNum<1182>.

100 = UserNotAuthorized User does not have permission for Group: [XATH_CASH_GENERAL].

100 = UserNotAuthorized User does not have permission to subscribe for incremental updates

Page 23 of 74

 Request Rejection (Session-Level validation error)

A “3 = Reject” message will be sent for malformed request messages (missing required fields or invalid values).

Example:

An application message request with a missing “1355 = RefApplID” field will receive a “3 = Reject” response

message with the following text in field “58 = Text”:

“Bad message. Required field is missing. Field [tag=1355, scope=Repeating Group Instance

(numInGroupTag=1351)]. Message [type=BW, seqNum=2, dictionary=MDFS_FIX50SP2].”

Note that the contents of the “58 = Text” field are subject to change, so clients should not rely on parsing the

rejection text for any application logic.

 Message Encoding

The optional field “20012 = ATHEXMessageEncoding” can be included in “BX = ApplicationMessageRequestAck”

messages sent by a client and specifies the encoding of the messages that will be sent out in response to this

request. This applies to requests with field “1347 = ApplicationRequestType” having a value of:

• “0 = Retransmission of application messages for the specified Applications”

• “1 = Subscription to the specified Applications”

• “100 = Snapshot for the specified Applications”

It has no effect for requests with value:

• “4 = Unsubscribe to the specified Applications”

The possible values for field “20012 = ATHEXMessageEncoding” are:

• 0 = FAST

• 1 = FIX

If the field is missing from a request, then the value is of “0 = FAST” is implied.

5.4. FAST Encoded Message Encapsulation

If a client requests for messages to be sent using FAST encoding (see section Message Encoding for details), the

market data messages send via the TCP/IP Service for that request will have the value “UEFD =

EncapsulatedFASTData” in field “35 = MsgType”. These are FIX messages that contain an encapsulated FAST

message.

Page 24 of 74

The included field “95 = RawDataLength” contains the number of bytes contained in field “96 = RawData” (the

encapsulated FAST message), exactly as it was when it was first transmitted including header fields such as “52 =

SendingTime”.

This format allows for FAST encoded messages to be sent via a standard FIX session. Upon receiving such a

message, the client must decode the encapsulated FAST message before processing it.

Note: The header field “52 = SendingTime” for messages with field “35 = MsgType” having the value “UEFD =

EncapsulatedFASTData” contains the time when the message was sent to a specific client’s FIX session. The

encapsulated FAST message, when decoded, contains the actual value of “52 = SendingTime”.

5.5. Subscribe Request

A client may request the transmission of real-time incremental traffic for a specific group, starting from the point

of subscription onwards, not including past messages.

This is done by sending a “BW = ApplicationMessageRequest” message with field “1347 =

ApplicationRequestType” having a value of “1 = Subscription to the specified Applications”.

The desired group must be specified in field “1355 = RefApplID”. Note that the “_INCR” or “_SNAP” suffixes are

redundant and must be omitted in this field.

Optionally, the encoding of the real-time messages sent by the MDFS for this group subscription can be set as

described in section Message Encoding.

Note: When a user disconnects from the TCP/IP Service, they will automatically be unsubscribed from all market

data groups. Upon reconnecting they will need to re-subscribe to any groups as appropriate.

5.6. Unsubscribe Request

A client may request to stop the transmission of real-time incremental traffic for a specific group to which they

were previously subscribed.

This is done by sending a “BW = ApplicationMessageRequest” message with field “1347 =

ApplicationRequestType” having a value of “4 = Unsubscribe to the specified Applications”.

The desired group must be specified in field “1355 = RefApplID”. Note that the “_INCR” or “_SNAP” suffixes are

redundant and must be omitted in this field.

Page 25 of 74

5.7. Retransmission Request

A client may request the retransmission of messages for a specific group.

This is done by sending a “BW = ApplicationMessageRequest” message with field “1347 =

ApplicationRequestType” having a value of “0 = Retransmission of application messages for the specified

Applications”.

The desired group must be specified in field “1355 = RefApplID”. Note that the “_INCR” or “_SNAP” suffixes are

redundant and must be omitted in this field.

The range of messages for a request must be specified. The starting point must be provided in field “1182 =

ApplBegSeqNum” and the ending point must be provided in field “1183 = ApplEndSeqNum”. The values of these

fields relate to the values of field “1181 = ApplSeqNum” for that specific group.

The range can be explicit, e.g. [1,1000] or have the ending point be the last available message by setting it to “0”,

e.g. [1,0] (all ranges are inclusive).

Optionally, the encoding of the messages sent by the MDFS as a result of this retransmission request can be set

as described is section Message Encoding.

Note: The field “52 = SendingTime” for FIX messages sent by the MDFS as a result of a retransmission request will

contain the timestamp of the original message. For encapsulated FAST encoded messages see section FAST

Encoded Message Encapsulation.

 Retransmission Request Report

After a retransmission has finished successfully, the client will receive a “BY = ApplicationMessageReport”

message which signals the end of the retransmission.

The report includes field “1357 = RefApplLastSeqNum” which contains the value of field “1181 = ApplSeqNum” of

the last market data message with this retransmission.

5.8. Snapshot Request

A client may request the transmission of the last available Snapshot cycle for a specific group. A new cycle is

generated every 1 minute.

This is done by sending a “BW = ApplicationMessageRequest” message with field “1347 =

ApplicationRequestType” having a value of “100 = Snapshot”.

The desired group must be specified in field “1355 = RefApplID”. Note that the “_INCR” or “_SNAP” suffixes are

redundant and must be omitted in this field.

Page 26 of 74

The snapshot messages for the received cycle will contain the field "369 = LastMsgSeqNumProcessed", whose

value is equal to the value of field “1181 = ApplSeqNum” of the last available incremental message at the time the

cycle was generated (i.e. included in the snapshots). This field is used for synchronization and recovery purposes.

Optionally, the encoding of the messages sent by the MDFS as a result of this snapshot request can be set as

described is section Message Encoding.

Note: The field “52 = SendingTime” for FIX messages sent by the MDFS as a result of a snapshot request will

contain the timestamp of the original message (which is the time the snapshot was generated). For encapsulated

FAST encoded messages see section FAST Encoded Message Encapsulation.

 Snapshot Request Report

After the transmission of a snapshot cycle has finished successfully, the client will receive a “BY =

ApplicationMessageReport” message which signals the end of the snapshot cycle transmission.

The report includes field “1357 = RefApplLastSeqNum” which contains the value of field “1181 = ApplSeqNum’ of

the last market data message sent for this snapshot cycle.

5.9. Disconnecting from the Service

To disconnect from the Service, the client must send a “5 = Logout” message. This message will also be sent from

the MDFS when the server shuts down or in case of session errors (e.g. not sending/responding to heartbeats).

To gracefully complete the disconnection procedure a “5 = Logout” message will be sent by the MDFS to

acknowledge the client’s request.

Note: When a user disconnects from the TCP/IP Service, they will automatically be unsubscribed from all market

data groups, meaning that upon reconnecting they will need to re-subscribe to any groups they want to receive

market data for.

5.10. Heartbeat Messages

The MDFS will transmit heartbeat messages for all incremental groups a client is subscribed to, as described in

section Heartbeat Messages.

If a client is not subscribed to any incremental group and no message is sent from either side for the duration

specified by the client upon logon (field “108 = HeartBtInt”), then a heartbeat message will be sent by the MDFS

as a keep-alive mechanism. Heartbeat messages sent for this reason will not contain the field “369 =

LastMsgSeqNumProcessed” or the application sequence control component, as they are not associated with any

market data group but rather the client’s session.

Page 27 of 74

5.11. Differentiating Between Incremental / Snapshots / Retransmissions

A client connecting to the MDFS TCP/IP Service will be receiving real-time incremental data, snapshots and

retransmissions via a single FIX session. It is fundamental for the client to be able to distinguish the respective

messages.

• Snapshots & Incremental / Retransmissions: it is important to differentiate snapshot traffic from real-

time incremental / retransmission traffic, in order to be able to follow the MDFS’ Incremental Feed

Approach. This can be done by examining the suffix “_INCR” or “_SNAP” in field “1180 = ApplID” as

described in the Handling Incremental & Snapshot Traffic section.

• Incremental & Retransmissions: due to the utilization of the Application Sequence Control component,

there is no need to differentiate between real-time incremental messages and retransmissions as the way

they are handled is uniform. Whenever a message is received, regardless of whether it originated from a

group subscription or a retransmission, it can only be processed after having completed processing all

previous messages. Thus, upon receiving a message that cannot be immediately processed, the client

needs to buffer it until it can be processed.

5.12. Initial Connection Procedure

A client connecting to the MDFS via TCP/IP can follow these steps to connect to the data feed and receive real-

time information:

Note: As a client may be receiving data related to multiple groups via a single FIX session, it is important to identify

which group each message refers to, by utilizing the application sequence control component. Steps 3-6 apply to

a single market data group, and as such it is implied that they apply to that specific group, in order to avoid

repetition.

1. Download reference data using the RDS service.

2. Connect to the TCP/IP Service and complete the logon procedure.

3. Request to subscribe to the desired group.

4. Determine if all data from the start of the day has been received. This is done by checking if the first

message received has field “1181 = ApplSeqNum” with a value of “1” or is a heartbeat with field “369 =

LastMsgSeqNumProcessed” having a value equal to “0”. If so, then no further action is required so skip to

step 7.

5. If the first message received has field “1181 = ApplSeqNum” with a value greater than “1” or is a heartbeat

with field “369 = LastMsgSeqNumProcessed” having a value greater than “0”, then the client needs to

buffer all incoming incremental messages for this group and synchronize with MDFS before proceeding to

apply the received messages. This can be done in the following ways:

a. via TCP/IP Snapshot, this method does not include historical data for the day:

i. Identify the sequence number of the last missing incremental message. This can be done

by subtracting 1 from the value of field “1181 = ApplSeqNum” of the first received

incremental message, or the value of “369 = LastMsgSeqNumProcessed” if the first

message received is a heartbeat.

Page 28 of 74

ii. Request a snapshot cycle for the group.

iii. Check if the received snapshots include data up to (or exceeding) the last missing

incremental message. This is done by checking if the value of field “369 =

LastMsgSeqNumProcessed” of the received snapshots is less than the sequence number

of the last missing incremental message. If so, request a retransmission with a starting

point equal to the next sequence number from one specified by field “369 =

LastMsgSeqNumProcessed” of the received snapshots and an ending point equal to the

sequence number of the last missing incremental message.

iv. Discard all buffered incremental messages with a sequence number up to and including

the value of field “369 = LastMsgSeqNumProcessed” provided in snapshot messages

received in this snapshot cycle.

v. Use the information contained in the snapshot cycle as a baseline to sequentially apply

the messages received by the retransmission.

b. via TCP/IP Retransmission, this method includes historical data for the day:

i. Identify the sequence number of the last missing incremental message. This can be done

by subtracting 1 from the value of field “1181 = ApplSeqNum” of the first received

incremental message, or the value of “369 = LastMsgSeqNumProcessed” if the first

message received is a heartbeat.

ii. Request a retransmission with a starting point equal to “1” to indicate the first message

of the day and the ending point equal to the sequence number of the last missing

incremental message.

iii. Apply all incremental messages received via the retransmission in sequential order.

6. Apply all the remaining buffered incremental messages.

7. Keep processing the incoming incremental messages and applying them in real time.

8. Repeat steps 3-6 for each group of interest.

Page 29 of 74

5.13. Recovery Procedure

In the unlikely occasion where a message is not received via the TCP/IP Service then the client should follow the

following procedure to perform recovery:

Note: As a client may be receiving data related to multiple groups via the same FIX session, it is important to

identify which group each message refers to by utilizing the application sequence control component. Steps 2-5

apply to a single market data group, and as such it is implied that they apply to that specific group, in order to

avoid repetition.

1. When a gap in field “1181 = ApplSeqNum” is observed, stop processing and buffer all incoming

incremental messages. See section Detecting Gaps for details.

2. Identify the sequence number of the first and last missing incremental messages.

3. The client needs to synchronize with MDFS in order to be able to process any further messages. This can

be done in the following ways:

a. via TCP/IP Snapshot, this method discards historical data for the day:

i. Request a snapshot cycle for the group.

ii. Check if the received snapshots include data up to (or exceeding) the last missing

incremental message. This is done by checking if the value of field “369 =

LastMsgSeqNumProcessed” of the received snapshots is less than the sequence number

of the last missing incremental message. If so, request a retransmission with a starting

point equal to the next sequence number from one specified by field “369 =

LastMsgSeqNumProcessed” of the received snapshots and an ending point equal to the

sequence number of the last missing incremental message.

iii. Discard all buffered incremental messages with a sequence number less or equal than the

value of field “369 = LastMsgSeqNumProcessed” included in snapshot messages received

in this snapshot cycle.

iv. Clear any past state and use the information contained in the snapshot cycle as a base to

apply the messages received by the retransmission.

b. via TCP/IP Retransmission, this method retains any historical data for the day (recommended

method):

i. Request a retransmission with a starting point equal to the sequence number of the first

missing incremental message and an ending point equal to the sequence number of the

last missing incremental message.

ii. Apply all incremental messages received via the retransmission in sequential order.

4. Apply all the remaining buffered incremental messages.

5. Resume processing the incoming incremental messages and applying them in real time.

Page 30 of 74

5.14. TCP/IP Service Examples

The following sections contain examples of messages received via the TCP/IP Service that showcase the different

types of traffic a client may receive. Clients need to be able to process data they receive for multiple market data

groups and traffic types as noted in section TCP/IP Service.

 Initial Connection Procedure using TCP/IP Snapshot

The following example showcases the typical connection procedure for a client utilizing the TCP/IP Snapshot

functionality.

MDFS Client Notes

 ← Logon

Logon → Acknowledgement

 ← ApplicationMessageRequest
ApplReqType = Subscribe

ApplicationMessageRequestAck →

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 102

→ The client needs to request a snapshot
cycle. This, and all further incremental
messages for this group, must be
buffered by the client for later
processing.

 ← ApplicationMessageRequest
ApplReqType = Snapshot

ApplicationMessageRequestAck →

Snapshot Message

ATHEXSnapshotIndicator = 0

ApplID = XATH_CASH_ORDERS_SNAP
ApplSeqNum = 2000
LastMsgSeqNumProcessed = 90

→ Start of the snapshot cycle.

…

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 103

→ Client receives a real-time message in
the middle of a snapshot cycle, and
must buffer it for later processing.

Snapshot Message

ATHEXSnapshotIndicator = 1

ApplID = XATH_CASH_ORDERS_ SNAP
ApplSeqNum = 2100
LastMsgSeqNumProcessed = 90

→ End of the snapshot cycle.
The client needs to process all
messages received in this cycle, then
the client needs to request a
retransmission for messages 91 to 101.

ApplicationMessageReport →

 ← ApplicationMessageRequest
ApplReqType =
Retransmission
ApplBegSeqNum = 91
ApplEndSeqNum = 101

ApplicationMessageRequestAck →

Retransmitted Incremental Message →

Page 31 of 74

ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 91

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 92

→

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 104

→ Synchronization not complete yet. This
must be buffered by the client

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 93

→

…

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 101

→ All requested messages have been
retransmitted. After the client has
processed them, they can process the
buffered messages and resume
processing incoming real-time
messages.

ApplicationMessageReport →

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 105

→ Client can process this message on
reception and continue normally.

…
Figure 8 - Initial Connection Procedure using TCP/IP Snapshot

Page 32 of 74

 Initial Connection Procedure using TCP/IP Retransmission

In the following example showcases the typical connection procedure for a client utilizing the TCP/IP

Retransmission functionality.

MDFS Client Notes

 ← Logon

Logon → Acknowledgement

 ← ApplicationMessageRequest
ApplReqType = Subscribe

ApplicationMessageRequestAck →

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 102

→ The client needs to request a
retransmission of messages 1 to
101.

 ← ApplicationMessageRequest
ApplReqType = Retransmission
ApplBegSeqNum = 1
ApplEndSeqNum = 101

ApplicationMessageRequestAck →

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 1

→

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 2

→

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 103

→ Client receives a real-time
message in the middle of a
retransmission, so they must
buffer it for later processing.

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 3

→

…

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 101

→ All requested messages have
been retransmitted. After the
client has processed them, they
can process the buffered
messages and resume processing
incoming real-time messages.

ApplicationMessageReport →

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 104

→ Client can process this message
on reception and continue
normally.

…
Figure 9 - Initial Connection Procedure using TCP/IP Retransmission

Page 33 of 74

 Different Heartbeat Types

This example shows the difference between session heartbeats and market data group heartbeats.

MDFS Client Notes
 ← Logon

HeartBtInt = 60

Logon → Acknowledgement

… No traffic on either direction for 60
seconds.

Heartbeat → Session heartbeat. Does not
include the Application Sequence
Control component or the field
LastMsgSeqNumProcessed.

 ← ApplicationMessageRequest
ApplReqType = Subscribe
RefApplID = XATH_CASH_ORDERS

ApplicationMessageRequestAck →

 ← ApplicationMessageRequest
ApplReqType = Subscribe
RefApplID = XATH_CASH_GENERAL

ApplicationMessageRequestAck →

Real-time Incremental Message
ApplID = XATH_CASH_ GENERAL _INCR
ApplSeqNum = 1

→ As a result of this message being
sent, no heartbeat will be sent for
XATH_CASH_ GENERAL at this
point.

… No traffic is produced for 30
seconds for group
XATH_CASH_ORDERS.

Heartbeat
LastMsgSeqNumProcessed = 0
ApplID = XATH_CASH_ GENERAL _INCR
ApplSeqNum = 0

→ Group heartbeat. The value 0 of
LastMsgSeqNumProcessed
indicates that no messages have
been sent for this group.

…
Figure 10 - Different Heartbeat Types

Page 34 of 74

 Multiple Market Data Groups via a Single FIX Session

In the following example a client receives interleaved real-time incremental traffic for multiple Market Data

groups and must be able to process the messages for each group independently, by examining the Application

Sequence Control component.

34 = MsgSeqNum 1180 = ApplID 1181 = ApplSeqNum Type

57 XATH_CASH_GENERAL_INCR 100 Incremental

58 XATH_CASH_ORDERS_INCR 457 Incremental

59 XATH_CASH_GENERAL_INCR 101 Incremental

60 XATH_CASH_ORDERS_INCR 458 Incremental

61 XATH_CASH_ORDERS_INCR 459 Incremental
Figure 11 - Multiple Market Data Groups via a Single FIX Session

 Multiple Traffic Types via a Single FIX Session

In the following example a client receives interleaved incremental, snapshot and retransmission traffic and must

be able to differentiate between the traffic types and process them accordingly.

34 = MsgSeqNum 1180 = ApplID 1181 = ApplSeqNum Type

5298 XATH_CASH_GENERAL_SNAP 32890 Snapshot

5299 XATH_CASH_GENERAL_INCR 1 Retransmission

5300 XATH_CASH_GENERAL_SNAP 32891 Snapshot

5301 XATH_CASH_GENERAL_INCR 2 Retransmission

5302 XATH_CASH_GENERAL_INCR 12005 Incremental

5303 XATH_CASH_GENERAL_INCR 3 Retransmission

5304 XATH_CASH_GENERAL_INCR 12006 Incremental
Figure 12 - Multiple Traffic Types via a Single FIX Session

Page 35 of 74

6. UDP Multicast Service

This section provides information related to the UDP Multicast Service of the MDFS.

6.1. Handling Data Feeds on Sources A & B

As aforementioned the MDFS replicates all feeds on two identical Sources (A & B). This is done to combat the

inherent unreliability of the UDP protocol, where the delivery of data packets is not guaranteed and there may be

cases of lost packets. It is strongly recommended that clients connect to both Sources in order to handle any such

incidents non-disruptively (without resorting to recovery).

In a typical scenario the client (assuming they are connected to both Source A & B) should, for each duplicate

message, keep the message received first from either Source and discard the subsequent copy they receive from

the other Source.

The following table is a simplified example of the typical data flow on Sources A & B, with shaded cells representing

messages the client should keep, discarding the rest:

Order
Field 1181 = ApplSeqNum

Source A Source B

1 100

2 100

3 101

4 101

5 102

6 102

7 103

8 103
Figure 13 - Sources A & B Example

Page 36 of 74

6.2. Handling Gaps in Message Sequence Numbers

The client should always check the field “1181 = ApplSeqNum” for gaps in the message sequence of any UDP

multicast feed they are connected to. In the case of a gap in the sequence numbers in either of the two Sources

the client should receive the message through the other Source (assuming they are connected to both Source A

& B).

The following table is an example of a scenario in which a sequence number gap occurs in one of the Sources,

where the shaded cells represent the messages, the client should keep:

Order
Field 1181 = ApplSeqNum

Source A Source B

1 100

2 100

3 101

4 101

5 102

6 103

7 103
Figure 14 - Handling Message Sequence Gaps

In the example above the message with value “102” in field “1181 = ApplSeqNum” was not received through

Source A, but was received through Source B. In this case the client should have no interruption of data flow as

they can utilize the message received from Source B.

6.3. Differentiating Between Incremental / Snapshots / Retransmissions

It is important for a client connecting to the MDFS UDP Multicast Service may to know when there is a need to

differentiate between these different types of data and how to do it.

• Snapshots & Incremental / Retransmissions: it is important to differentiate snapshot traffic from real-

time incremental / retransmission traffic, in order to be able to follow the MDFS’ Incremental Feed

Approach.

This is easily done for the UDP Multicast Service as all Incremental multicast groups will be transmitted

via the UDP port 10000, and all Snapshot multicast groups will be transmitted via the UDP port 20000.

Alternatively, this can be done by examining the suffix “_INCR” or “_SNAP” in field “1180 = ApplID” as

described in the Handling Incremental & Snapshot Traffic section.

• Incremental & Retransmissions: Since real-time incremental data are served by UDP multicast while

retransmissions are served via the TCP/IP service, no further logic is required.

Moreover, due to the utilization of the Application Sequence Control component, there is no need to

differentiate between real-time incremental messages and retransmissions as the way they are handled

Page 37 of 74

is uniform. Whenever a message is received, regardless of whether it originated from an incremental

multicast group or a TCP/IP retransmission, it can only be processed after having completed processing

all past messages. Therefore, when receiving messages that cannot be immediately processed, the client

needs to buffer these messages until processing is possible.

6.4. Initial Connection Procedure

A client connecting to the MDFS via UDP multicast can follow these steps to connect to the data feed and receive

real-time information:

Note: As a client may be receiving data related to multiple groups via multicast, it is important to identify which

group each message refers to by utilizing the application sequence control component. Steps 2-5 apply to a single

market data group, and as such it is implied that they apply to that specific group, in order to avoid repetition.

1. Download reference data using the RDS service.

2. Start listening to the Incremental feed.

3. Determine if all data from the start of the day has been received. This is done by checking if the first

message received has field “1181 = ApplSeqNum” with a value of “1” or is a heartbeat with field “369 =

LastMsgSeqNumProcessed” having a value equal to “0”. If so, then no further action is required so skip to

step 6.

4. If the first message received has field “1181 = ApplSeqNum” with a value greater than “1” or is a heartbeat

with field “369 = LastMsgSeqNumProcessed” having a value greater than “0”, then the client needs to

buffer all incoming incremental messages for this group and synchronize with MDFS in order to be able

to apply the received messages. This can be done in the following ways:

a. via UDP multicast Snapshot, this method does not include historical data for the day:

i. Start listening to the Snapshot Feed. Discard all snapshot messages until you reach the

message indicating the start of a snapshot cycle. Keep listening until you receive the

message indicating the end of the snapshot cycle with.

Note: in the unlikely event where a snapshot cycle is received where the value of “369 =

LastMsgSeqNumProcessed” is less than the sequence number of the last missing

incremental message (identified by subtracting 1 from the value of field “1181 =

ApplSeqNum” of the first received incremental message, or the value of “369 =

LastMsgSeqNumProcessed” if the first message received is a heartbeat), then the client

should discard that snapshot cycle and repeat this step until a snapshot cycle containing

information up to and including the last missing message (see Snapshot Cycles for details)

is received.

ii. Discard all buffered incremental messages with a sequence number up to and including

the value of field “369 = LastMsgSeqNumProcessed” provided in snapshot messages

received in this snapshot cycle.

iii. Use the information contained in the snapshot cycle as a baseline to sequentially apply

the received incremental messages on.

b. via TCP/IP Snapshot, this method does not include historical data for the day:

Page 38 of 74

i. Identify the sequence number of the last missing incremental message. This can be done

by subtracting 1 from the value of field “1181 = ApplSeqNum” of the first received

incremental message, or the value of “369 = LastMsgSeqNumProcessed” if the first

message received is a heartbeat.

ii. If not already connected, connect to the TCP/IP Service and complete the logon

procedure, then request a snapshot cycle for the group.

iii. Check if the received snapshots include data up to (or exceeding) the last missing

incremental message. This is done by checking if the value of field “369 =

LastMsgSeqNumProcessed” of the received snapshots is less than the sequence number

of the last missing incremental message. If so, request a retransmission with a starting

point equal to the next sequence number from one specified by field “369 =

LastMsgSeqNumProcessed” of the received snapshots and an ending point equal to the

sequence number of the last missing incremental message.

iv. Discard all buffered incremental messages with a sequence number up to and including

the value of field “369 = LastMsgSeqNumProcessed” provided in snapshot messages

received in this snapshot cycle.

v. Use the information contained in the snapshot cycle as a baseline to sequentially apply

the messages received by the retransmission.

c. via TCP/IP Retransmission, this method includes historical data for the day:

i. Identify the sequence number of the last missing incremental message. This can be done

by subtracting 1 from the value of field “1181 = ApplSeqNum” of the first received

incremental message, or the value of “369 = LastMsgSeqNumProcessed” if the first

message received is a heartbeat.

ii. If not already connected, connect to the TCP/IP Service and complete the logon

procedure, then request a retransmission with a starting point equal to “1” to indicate

the first message of the day, and the ending point equal to the sequence number of the

last missing incremental message.

iii. Apply all incremental messages received via the retransmission in sequential order.

5. Apply all the remaining buffered incremental messages.

6. Keep processing the incoming incremental messages and applying them in real time.

7. Repeat steps 2-5 for each group of interest.

Note: for details regarding the TCP/IP Service, please see section TCP/IP Service.

Page 39 of 74

6.5. Recovery Procedure

In the unlikely occasion where a message is not available through either Source A or B then the client should follow

the following procedure to perform recovery:

Note: As a client may be receiving data related to multiple groups via the same FIX session, it is important to

identify which group each message refers to by utilizing the application sequence control component. Steps 2-4

apply to a single market data group, and as such it is implied that they apply to that specific group, in order to

avoid repetition.

1. When a gap in field “1181 = ApplSeqNum” is observed, stop processing and buffer all incoming

incremental messages. See section Detecting Gaps for details.

2. Identify the sequence number of first and last missing incremental messages. The last missing message

can be identified by subtracting 1 from the value of field “1181 = ApplSeqNum” of the first received

incremental message, or the value of “369 = LastMsgSeqNumProcessed” if the first message received is a

heartbeat.

3. The client needs to synchronize with MDFS in order to be able to process any further messages. This can

be done in the following ways:

a. via UDP multicast Snapshot, this method discards any historical data for the day:

i. Start listening to the Snapshot Feed. Discard all snapshot messages until you reach the

message indicating the start of a snapshot cycle. Keep listening until you receive the

message indicating the end of the snapshot cycle.

Note: in the unlikely event where a snapshot cycle is received where the value of “369 =

LastMsgSeqNumProcessed” of the received snapshots is less than the sequence number

of the last missing message, then the client should discard that snapshot cycle and repeat

this step until a snapshot cycle containing information up to and including the last missing

message (see Snapshot Cycles for details) is received.

ii. Disconnect from the Snapshot Feed. Once you have received a full snapshot cycle you will

have all the information needed to synchronize with the accompanying incremental

stream.

iii. Discard all buffered incremental messages with a sequence number less or equal than the

value of field “369 = LastMsgSeqNumProcessed” included in snapshot messages received

in this snapshot cycle.

iv. Clear any past state and use the information contained in the snapshot cycle as a base to

apply future incremental messages on.

b. via TCP/IP Snapshot, this method discards historical data for the day:

i. If not already connected, connect to the TCP/IP Service and complete the logon

procedure, then request a snapshot cycle for the group.

ii. Check if the received snapshots include data up to (or exceeding) the last missing

incremental message. This is done by checking if the value of field “369 =

LastMsgSeqNumProcessed” of the received snapshots is less than the sequence number

of the last missing incremental message. If so, request a retransmission with a starting

point equal to the next sequence number from one specified by field “369 =

Page 40 of 74

LastMsgSeqNumProcessed” of the received snapshots and an ending point equal to the

sequence number of the last missing incremental message.

iii. Discard all buffered incremental messages with a sequence number less or equal than the

value of field “369 = LastMsgSeqNumProcessed” included in snapshot messages received

in this snapshot cycle.

iv. Clear any past state and use the information contained in the snapshot cycle as a base to

apply the messages received by the retransmission.

c. via TCP/IP Retransmission, this method retains any historical data for the day (recommended

method):

i. If not already connected, connect to the TCP/IP Service and complete the logon

procedure, then request a retransmission with a starting point equal to the sequence

number of the first missing incremental message and an ending point equal to the

sequence number of the last missing incremental message.

ii. Apply all incremental messages received via the retransmission in sequential order.

4. Apply all the remaining buffered incremental messages.

5. Resume processing the incoming incremental messages and applying them in real time.

Note: for details regarding the TCP/IP Service, please see section TCP/IP Service.

Page 41 of 74

6.6. Multicast Service Examples

 Initial Connection Procedure using UDP Multicast Snapshot

In the following example showcases the typical connection procedure for a client utilizing the UDP Multicast

Snapshot functionality.

MDFS Messages Client Messages Notes

… Client joins multicast group
XATH_CASH_ORDERS_INCR.

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 102

→
MCAST

 The client needs to receive a full
snapshot cycle. This, and all further
incremental messages for this group,
must be buffered by the client for later
processing.

…

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 110

→
MCAST

… Client joins multicast group
XATH_CASH_ORDERS_SNAP.

Snapshot Message
ApplID = XATH_CASH_ORDERS_SNAP
ApplSeqNum = 2000
LastMsgSeqNumProcessed = 110

→
MCAST

 Start of the snapshot cycle.

…

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 111

→
MCAST

 Client receives a real-time message in
the middle of a snapshot cycle, so they
must buffer it for later processing.

Snapshot Message
ApplID = XATH_CASH_ORDERS_ SNAP
ApplSeqNum = 2100
LastMsgSeqNumProcessed = 110

→
MCAST

 End of the snapshot cycle.
The client needs to process all messages
received in this cycle.

After the client has processed them,
they should discard all real-time
incremental messages with ApplSeqNum
less than or equal to 110, then they can
process the remaining buffered
messages and resume processing
incoming real-time messages.

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 112

→
MCAST

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 113

→
MCAST

…
Figure 15 - Initial Connection Procedure using UDP Multicast Snapshot

Page 42 of 74

 Initial Connection Procedure using TCP/IP Snapshot

In the following example showcases the typical connection procedure for a client utilizing the TCP/IP Snapshot

functionality.

MDFS Messages Client Messages Notes

… Client joins multicast group
XATH_CASH_ORDERS_INCR.

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 102

→
MCAST

 The client needs to request a
snapshot cycle. This, and all
further incremental messages
for this group, must be buffered
by the client for later
processing.

 ←
TCP

ApplicationMessageRequest
ApplReqType = Snapshot

ApplicationMessageRequestAck →
TCP

Snapshot Message
ApplID = XATH_CASH_ORDERS_SNAP
ApplSeqNum = 2000
LastMsgSeqNumProcessed = 90

→
TCP

 Start of the snapshot cycle.

…

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 103

→
MCAST

 Client receives a real-time
message in the middle of a
snapshot cycle, so they must
buffer it for later processing.

Snapshot Message
ApplID = XATH_CASH_ORDERS_ SNAP
ApplSeqNum = 2100
LastMsgSeqNumProcessed = 90

→
TCP

 End of the snapshot cycle.
The client needs to process all
messages received in this cycle,
then the client needs to request
a retransmission for messages
91 to 101.

ApplicationMessageReport →
TCP

 ←
TCP

ApplicationMessageRequest
ApplReqType = Retransmission
ApplBegSeqNum = 91
ApplEndSeqNum = 101

ApplicationMessageRequestAck →
TCP

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 91

→
TCP

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 92

→
TCP

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 104

→
MCAST

 The client needs to buffer this
message.

Retransmitted Incremental Message →

Page 43 of 74

ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 93

TCP

…

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 101

→
TCP

 All requested messages have
been retransmitted. After the
client has processed them, they
can process the buffered
messages and resume
processing incoming real-time
messages.

ApplicationMessageReport →
TCP

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 105

→
MCAST

 The client can process this
message immediately and
continue normal operation.

…
Figure 16 - Initial Connection Procedure using TCP/IP Snapshot

Page 44 of 74

 Initial Connection Procedure using TCP/IP Retransmission

In the following example showcases the typical connection procedure for a client utilizing the TCP/IP

Retransmission functionality.

MDFS Messages Client Messages Notes

… Client joins multicast group
XATH_CASH_ORDERS_INCR.

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 102

→
MCAST

 The client needs to request a
retransmission of messages 1
to 101.

 ←
TCP

ApplicationMessageRequest
ApplReqType = Retransmission
ApplBegSeqNum = 1
ApplEndSeqNum = 101

ApplicationMessageRequestAck →
TCP

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 1

→
TCP

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 2

→
TCP

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 103

→
MCAST

 Client receives a real-time
message in the middle of a
retransmission, so they must
buffer it for later processing.

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 3

→
TCP

…

Retransmitted Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 101

→
TCP

 All requested messages have
been retransmitted. After the
client has processed them,
they can process the buffered
messages and resume
processing incoming real-time
messages.

ApplicationMessageReport →
TCP

Real-time Incremental Message
ApplID = XATH_CASH_ORDERS_INCR
ApplSeqNum = 104

→
MCAST

…
Figure 17 - Initial Connection Procedure using TCP/IP Retransmission

Page 45 of 74

7. FAST Message Encoding

The FAST Protocol is developed, maintained and supported by the FIX Trading Community’s Market Data

Optimization Working Group. The protocol is intended to enable efficient use of bandwidth in high volume

messaging without incurring material processing overhead or latency. The MDFS’ implementation is based on the

FAST 1.2 specification. Please refer to the documentation available at the provided link for more details regarding

encoding and decoding FAST FIX messages.

The following methods are utilized for data compression:

• Implicit Tagging

• Optional Fields

• Field Operators

• Presence Maps

• Stop-bit Encoding

• Binary Encoding

These methods are further explained in subsequent sections of this document.

The FAST format encoding rules for MDFS are distributed as XML Templates.

Note: While the MDFS is designed to work with FAST 1.2, currently no features of the 1.2 revision are utilized for

performance reasons. Thus, the MDFS is currently backwards compatible with FAST 1.1, but this is subject to

change in the future if any FAST 1.2 features are utilized.

https://www.fixtrading.org/standards/fast/

Page 46 of 74

7.1. Template Versioning

Each version of MDFS is accompanied by a corresponding FAST templates XML file. The format of all FAST encoded

FIX messages sent by the MDFS is described in this document containing templates for each message type. A

sample of the FAST template XML format can be found in the appendix.

Each message type used by the MDFS is described by a <template> element in the XML file. Each <template>

element has an “id” attribute that is a unique number, and a “name” attribute that is a unique string. The “name”

attribute includes the template’s “id” as a suffix.

In each revision of the templates XML file there are up to two <template> elements for each message type with

different “id” attributes, one describes the latest version of the message and the other describes the previous

version (if applicable). This is done to facilitate seamless transition from one version of the MDFS to the next, as

the client may start utilizing the latest templates XML file before the latest version of the MDFS is released, as the

XML will contain <template> elements for both the old and new version of the message.

The client can determine which <template> corresponds to the latest version of a message by looking at the “id”

attribute. The value of the “id” attribute always increments and as such the latest version of a message is the one

with the largest value in its “id” attribute.

For example:

Templates_v10.xml includes:

...

<!--CURRENT - Trading Session Status Message-->

<template name="TradingSessionStatus_100" id="100">

...

<!--DEPRECATED - Trading Session Status Message-->

<template name="TradingSessionStatus_65" id="65">

...

in this case the template with id="100" should be used when the new version of MDFS is released, and the

template with id="65" is used by the previous MDFS version.

Templates_v11.xml includes:

...

<!--CURRENT - Trading Session Status Message-->

<template name="TradingSessionStatus_120" id="120">

...

...

<!--DEPRECATED - Trading Session Status Message-->

<template name="TradingSessionStatus_100" id="100">

...

in this case the template with id="120" should be used when the new version of MDFS is released, and the

template with id="100" now represents the template used by the previous MDFS version.

Page 47 of 74

7.2. Packet Structure

The following table is a representation of a FAST Packet:

FAST Encoded Message

Message
PMAP

Fields / Groups

Sequence (Repeating Group)

Fields/Groups

Field /
Group

1
…

Field /
Group

n

Instance 1
…

Instance m Field /
Group

1
…

Field /
Group

n PMAP
Fields /
Groups

PMAP
Fields /
Groups

Figure 18 - FAST Packet Structure

Where:

• Field: A FAST-encoded FIX field.

• Group: A group of FAST-encoded FIX fields, that usually appear together. Appears as a <group> element in

FAST .xml templates.

• Sequence (Repeating Group): A FIX repeating group. Appears as a <sequence> element in FAST .xml

templates.

• Instance: An instance of a FIX repeating group.

7.3. Data Types

The following data types used in FAST templates:

• Signed and unsigned 32/64-bit integer

• Decimal number

• Length

• String - ASCII (7-bit) strings (no special characters allowed)

• Byte vector

Page 48 of 74

7.4. Templates & Implicit Tagging

Every FAST message has a template ID as the first integer field that will be used by the decoder to choose what

template will be used to decode it. The template describes what fields from the original FIX message are included,

their types and transfer encodings.

By having a fixed field order, FAST templates reduce redundancies within a message, as the field meaning is

deferred by its position in the message and there is no need to transfer the field tag to describe the field value. If

the original FIX message contains fields that are not specified in the template, they are simply ignored when

encoding, and as such do not need to be decoded as well.

There can be several templates for the same FIX message (“MsgType = X’, for instance), but referring to different

versions of the message layout.

The templates are distributed in a single XML file. An example of the format can be found in the appendix.

7.5. Mandatory and Optional Fields

The optional presence attribute indicates whether the field is mandatory or optional. If the attribute is not

specified, the field is mandatory.

7.6. Field Operators

Field operators are used to remove redundancies in the data values. The message templates (which are provided

beforehand) serve as the metadata for the message. Upon receiving a message, the recipient has complete

knowledge of the message layout via the template definition and is able to determine the field values of the

incoming message.

The operators used by the MDFS are:

• (None): The field will be encoded as is.

• Constant: The field will always have a predetermined value.

• Default: The field is omitted from the message if it is equal to the default value. Used in MDFS templates

to force the usage of a PMAP bit for the field.

More details about these operators can be found in the FAST Specification documents.

Page 49 of 74

7.7. Presence Map (PMAP)

The presence map is a bit map indicating the presence or absence of a field in the message body. One bit is used

in the PMAP for each field that requires it. The allocation of a bit for a field in the presence map is governed by

the FAST field encoding rules.

7.8. Stop Bit Encoding

All FAST fields are stop bit encoded with the exception of byte vectors. Instead of using a length indicator or the

standard FIX-separator (<SOH> byte), each byte consists of 7 bits for data transfer and the 8th bit to indicate the

end of a field value.

7.9. Binary Encoding

Binary encoding is used on numbers, rendering them into binary across the 7 data bits in each byte. Thus, a number

less than 2^7-1, (127) will only occupy one byte, a number between 2^7 and 2^7*2 – 1 (16,383), will occupy two

bytes etc.

7.10. Decoding Overview

The following is a brief overview of the steps required to decode a FAST message to the underlying FIX format:

1. The client receives a FAST encoded FIX message.

2. Template Identification.

3. Extraction of binary encoded bits.

4. Mapping the received bits to template fields.

5. Field decoding using operators to determine values according to the template.

6. Generation and processing of the FIX message.

Page 50 of 74

7.11. Decoding Example

 The following table provides a detailed example on how to decode a FAST-encoded message. The template used

in this example can be found in the appendix.

Message Data
Hex: 0XF8 0xA2 0x82 0x54 0x45 0X53 0xD4 0x82 0XB0 0xFF 0x04 0x9E 0x81 0x02 0xAC
Binary: 11111000 10100010 10000010 01010100 01000101 01010011 11010100 10000010 10110000 1111111
00000100 10011110 10000001 00000010 10101100
Message PMAP: 11111000

Field
Attributes

/
Operators

Type Presence
PMAP Bit
Required

PMAP
bit

Encoded
Value

Stop Bit
Decoded

Value
Value

 Template ID None uInt32 Mandatory true 1 10100010 _0100010 34

1 35 = MsgType Constant string Mandatory false “W”

2 1021 = MDBookType Default uInt32 Optional true 1 10000010 _0000010* 1

3 55 = Symbol Default string Optional true 1

01010100
01000101
01010011
11010100

01010100
01000101
01010011
01010100

“TEST”

Sequence (Repeating Group) Data
Hex: 0x82 0xB0 0xFF 0x04 0x9E 0x81 0x02 0xAC
Binary: 10000010 10110000 1111111 00000100 10011110 10000001 00000010 10101100

4 268 = NoMDEntries Default length Optional true 1 10000010 _0000010* 1

Repeating Group Instance Data
Hex: 0xB0 0xFF 0x04 0x9E 0x81 0x02 0xAC
Binary: 10110000 1111111 00000100 10011110 10000001 00000010 10101100
PMAP: 10110000

5 1023 = MDPriceLevel Default uInt32 Optional true 0

6 270 = MDEntryPx Default decimal Optional true 1

Exponent:
1111111

Mantissa:
00000100
10011110

Exponent:
_1111111
→ 10^-1

Mantissa:
_0000100
_0011110
→542

54.2

7 271 = MDEntrySize Default decimal Optional true 1

Exponent:
10000001

Mantissa:
00000010
10101100

Exponent:
_0000001*
→ 10^0

Mantissa:
_0000010
_0101100
→ 300

300

Figure 19 - FAST Decoding Example

Page 51 of 74

* To decode Positive arithmetic fields that are nullable (according to the FAST protocol standard) we need to take

the positive value of the result (without the stop bits) and subtract 1 from it. That is why i.e NoMDEntries which

results to 00000010 without the stop bit is translated to 1, or why the exponent for MDEntrySize which results to

0000001 without stop bit is translated to 0.

Note:

Utilized PMAP bits are in bold.

Stop bits are underlined.

7.12. Partial Decoding

If latency is of critical importance, a client can perform a partial decoding of the FAST message in order to decide

whether to discard a message prior to decoding it.

This can be very useful when receiving multicast traffic via both Source A and B, by quickly extracting the sequence

number from the FAST message and determining whether this is a packet has already been received from the

other source, or if it indicates a rollback in the market data group.

ApplSeqNum

All FAST encoded messages sent by MDFS are guaranteed to have the same value in field "34=MsgSeqNum" as

in field "1181=ApplSeqNum". This means that for the purposes of simpler partial FAST decoding, the field

"34=MsgSeqNum" can be used to determine if a message is a duplicate as it has a constant position in the FAST

encoded message structure (compared to field "1181=ApplSeqNum" which does not).

Because the "34= MsgSeqNum" field is positioned in the header component of the message and no optional fields

are before it, a client can advance the decoder state until it reaches the N-th stop-bit position where the field "34=

MsgSeqNum" is located and decode the stop-bit encoded value.

As of version 6 (MDFS_FIX50SP2_FAST_1.2_Templates_v6.xml) of the MDFS FAST templates XML file the first FAST

Fields encountered are: Global PMap, Template ID, SenderCompID, TargetCompID, MsgSeqNum.

Each of the above FAST fields take up one stop-bit encoded value, thus the field "34 = MsgSeqNum" is at the 5th

stop-bit encoded value.

ATHEXRecoveryGrp

To check for the presence of the ATHEXRecoveryGrp repeating group (indicating that a rollback has taken place),

the client must check the presence map bit for the repeating group according to the message template.

Page 52 of 74

8. Order Book Handling

This section contains instructions on how to maintain the different types of order books for an instrument.

The three types of order books supported by the MDFS are:

• Top of Book

• Price Depth

• Order Depth

For each instrument, the client can keep these order books up to date by following the instructions contained in

this section when processing the Incremental messages received through the MDFS. Keep in mind that:

• In accordance with FIX guidelines all order book handling instructions are handled by messages that

contain repeating groups with field “269=MDEntryType” having value “0 = Bid”, “1 = Offer” or “J = Empty

book”. As such any other repeating group types, such as those with field “269=MDEntryType” having value

“2 = Trade” should not be used to alter the order book, as the appropriate Order Depth Update messages

for each side of the trade will be sent containing the appropriate order book maintenance actions.

• There is no parity in the values of field “60 = TransactTime” between the Oder Depth & Top of Book/Price

Depth books as these are handled independently, i.e. the value of field “60 = TransactTime” of an Orde

Depth Update message will be different from that of the Top of Book/Price Depth Update message that

is triggered by the same order altering both books.

Note: Some fields that do not affect the handling of the orders books will be omitted from the example

messages included in this section to improve readability. The actual messages transmitted will include

additional fields.

Page 53 of 74

8.1. Market/Stop/ATO/ATC orders

This section details the handling of Market/Stop/ATO/ATC orders in the order & price depth books.

 Order Depth Book

Market/Stop (value “1=Market”/” = Stop” in field “40 = OrdType”) and ATO/ATC orders (value “2 = At the Opening

(OPG)”/”7 = At the Close” in field “59 = TimeInForce”) do not have a set price (thus do not contain the field “270

= MDEntryPx”). Those orders are always placed at the top of the order depth book with the value of “b = Market

Bid”/”c = Market Offer” in field “269 = MDEntryType” and are ordered by their release timestamp in the matching

engine.

 Top of Book/Price Depth Book

The volume of Market+ATO or ATC orders is disseminated via the Top of Book / Price Depth books. A repeating

group with the value of “b = Market Bid”/”c = Market Offer” in field “269 = MDEntryType” will be sent to update

the volume and number of orders placed for the opening auction (Market+ATO), closing auction (ATC) and any

other intraday auction, as well as during the closing price trading phase (ATC). These repeating group entries do

not contain the field “270 = MDEntryPx”.

8.2. Empty Book

Instructs the client to empty a book of a specific instrument. Typically sent at the start of the trading session.

Example Message:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType J = Empty book

264 MarketDepth 10 = 10 Levels

A similar message may be sent for any order book type.

Page 54 of 74

8.3. Top of Book

This type of order book contains only be top price level for an instrument.

Incremental Refresh messages relevant to the Top of Book of an instrument are sent multiple times during each

trading session in order to give the client the information necessary to keep it up to date.

Examples of how to handle the various possible scenarios follow.

 New – Addition to an empty side

Consider the following initial state for the client’s Top of Book order book:

Bid Offer

Price Volume No. of Orders Price Volume No. of Orders

- - - 70 20 4

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 1 = Top of Book

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 50

271 MDEntrySize 10

264 MarketDepth 1 = Top of Book

1023 MDPriceLevel 1

346 NumberOfOrders 2

The message above indicates a new Top of Book entry for the previously empty bid side. This results in the client’s

Top of Book order book looking as follows:

Bid Offer

Price Volume No. of Orders Price Volume No. of Orders

50 10 2 70 20 4

Page 55 of 74

 Change – Change of volume / no. of orders

Consider the following initial state for the client’s Top of Book order book:

Bid Offer

Price Volume No. of Orders Price Volume No. of Orders

50 10 2 70 20 4

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 1 = Top of Book

279 MDUpdateAction 1 = Change

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 50

271 MDEntrySize 4

264 MarketDepth 1 = Top of Book

1023 MDPriceLevel 1

346 NumberOfOrders 1

The message above indicates a change in the volume and no. of orders at the bid side. This results in the client’s

Top of Book order book looking as follows:

Bid Offer

Price Volume No. of Orders Price Volume No. of Orders

50 4 1 70 20 4

Page 56 of 74

 Delete – A side becomes empty

Consider the following initial state for the client’s Top of Book order book:

Bid Offer

Price Volume No. of Orders Price Volume No. of Orders

50 4 1 60 6 1

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 1 = Top of Book

279 MDUpdateAction 2 = Delete

55 Symbol Example Instrument

269 MDEntryType 1 = Offer

270 MDEntryPx 60

271 MDEntrySize 6

264 MarketDepth 1 = Top of Book

1023 MDPriceLevel 1

346 NumberOfOrders 1

The message above indicates that there are no orders at the offer side for the instrument, resulting in an empty

Top of Book. This results in the client’s Top of Book order book looking as follows:

Bid Offer

Price Volume No. of Orders Price Volume No. of Orders

50 4 1 - - -

Page 57 of 74

8.4. Price Depth Book

This type of order book contains the best bids and offers for an instrument, aggregated by price. The maximum

number of levels provided for each price order book depends on the multicast group it is disseminated through.

Incremental Refresh messages relevant to the Price Depth order book of an instrument are sent multiple times

during each trading session in order to give the client the information necessary to keep it up to date.

Examples of how to handle the various possible scenarios follow. The scenarios below assume a max Price Depth

of 3 (field “264 = MarketDepth” = 3) for simplicity’s sake, but the same concepts apply for any depth.

 New – Level insertion at the bottom of the book

Consider the following initial state for the client’s Price Depth order book:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 50 5 2 80 4 1

2 40 2 1 90 6 3
3 - - - 100 5 2

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 30

271 MDEntrySize 4

264 MarketDepth 3

1023 MDPriceLevel 3

346 NumberOfOrders 1

The message above indicates a new level at the bottom of the bid side. This results in the client’s Price Depth

order book looking as follows:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 50 5 2 80 4 1

2 40 2 1 90 6 3

3 30 4 1 100 5 2

Page 58 of 74

 New – Level insertion, causing a shift

Consider the following initial state for the client’s Price Depth order book:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 60 5 2 80 4 1

2 40 7 2 90 6 3

3 30 4 1 - - -

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType 1 = Offer

270 MDEntryPx 85

271 MDEntrySize 2

264 MarketDepth 3

1023 MDPriceLevel 2

346 NumberOfOrders 1

The message above indicates the insertion of a new level at position 2 of the offer side. When processing this

message, the client should shift the entry that was previously at this level, as well as all levels below it down by

one level. In this example the entry with Price = 90 is shifted, going from level 2 to 3. This results in the client’s

Price Depth order book looking as follows:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 60 5 2 80 4 1

2 40 7 2 85 2 1

3 30 4 1 90 6 3

Page 59 of 74

 New – Level insertion, causing the deletion of the last level

Consider the following initial state for the client’s Price Depth order book:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 60 5 2 80 4 1

2 40 7 2 85 2 1

3 30 4 1 90 6 3

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 35

271 MDEntrySize 3

264 MarketDepth 3

1023 MDPriceLevel 3

346 NumberOfOrders 1

The message above indicates the insertion of a new price level at position 3 of the bid side. When processing this

message, the client would shift the entry that was previously at this position, as well as all levels below it down by

one level. In this example the entry with Price = 30 is shifted down by one level, going from 3 to 4, thus exceeding

the max book depth, and as such should be deleted. This results in the client’s Price Depth order book looking as

follows:

 Bid Offer

 Level Price Volume No. of Orders Price Volume No. of Orders

Max
book depth

3

1 60 5 2 80 4 1

2 40 7 2 85 2 1

3 35 3 1 90 6 3

Exceeds max depth 30 4 1

 ↓

 Bid Offer

 Level Price Volume No. of Orders Price Volume No. of Orders

 1 60 5 2 80 4 1

 2 40 7 2 85 2 1

 3 35 3 1 90 6 3

Page 60 of 74

 Change – Change of a level’s volume / no. of orders

Consider the following initial state for the client’s Price Depth order book:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 50 5 2 80 4 1

2 40 2 1 90 6 3

3 30 4 1 - - -

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 1 = Change

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 40

271 MDEntrySize 7

264 MarketDepth 3

1023 MDPriceLevel 2

346 NumberOfOrders 2

The message above indicates a change in the volume and no. of orders at level 2 of the bid side. This results in the

client’s Price Depth order book looking as follows:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 50 5 2 80 4 1

2 40 7 2 90 6 3

3 30 4 1 - - -

Page 61 of 74

 Delete – Level deletion from the bottom of the book

Consider the following initial state for the client’s Price Depth order book:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 50 5 2 80 4 1

2 40 2 1 90 6 3

3 30 4 1 100 5 2

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 2 = Delete

55 Symbol Example Instrument

269 MDEntryType 1 = Offer

270 MDEntryPx 100

271 MDEntrySize 5

264 MarketDepth 3

1023 MDPriceLevel 3

346 NumberOfOrders 2

The message above indicates the deletion of a level at the bottom of the offer side. This results in the client’s Price

Depth order book looking as follows:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 50 5 2 80 4 1

2 40 2 1 90 6 3

3 30 4 1 - - -

Page 62 of 74

 Delete – Level deletion, causing a shift

Consider the following initial state for the client’s Price Depth order book:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 60 5 2 80 4 1

2 40 7 2 85 2 1

3 30 4 1 90 6 3

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 2 = Price Depth

279 MDUpdateAction 2 = Delete

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 60

271 MDEntrySize 5

264 MarketDepth 3

1023 MDPriceLevel 1

346 NumberOfOrders 2

The message above indicates the deletion of the first level of the bid side. When processing this message, the

client should remove the level and shift all levels below up by one level. In this example levels 2 and 3 are shifted

up by one level. This results in the client’s Price Depth order book looking as follows:

 Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 - - - 80 4 1

2 40 7 2 85 2 1

3 30 4 1 90 6 3

↓

Bid Offer

Level Price Volume No. of Orders Price Volume No. of Orders

1 40 7 2 80 4 1

2 30 4 1 85 2 1

3 - - - 90 6 3

Page 63 of 74

8.5. Order Depth Book

This type of order book contains the full order depth for a given instrument. Incremental Refresh messages

relevant to the Order Depth order book of an instrument are sent multiple times during each trading session in

order to give the client the information necessary to keep it up to date.

Examples of how to handle the various possible scenarios follow.

 New – Entry Insertion at the bottom of the book

Consider the following initial state for the client’s Order Depth order book:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 3 109

4 40 4 101 4 90 4 103

5 30 1 100 5 90 5 120

6 30 7 104

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 3 = Order Depth

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType 1 = Offer

270 MDEntryPx 90

271 MDEntrySize 3

290 MDEntryPositionNo 6

37 OrderID 121

The message above indicates a new order with price 90 at position 6 of the offer side. This results in the client’s

Order Depth order book looking as follows:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 3 109

4 40 4 101 4 90 4 103

5 30 1 100 5 90 5 120

6 30 7 104 6 90 3 121

Page 64 of 74

 New – Entry insertion, causing a shift

Consider the following initial state for the client’s Order Depth order book:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 3 109

4 40 4 101 4 90 4 103

5 30 1 100 5 90 5 120

6 30 7 104 6 90 3 121

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 3 = Order Depth

279 MDUpdateAction 0 = New

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 40

271 MDEntrySize 3

290 MDEntryPositionNo 5

37 OrderID 122

The message above indicates a new order with price 40 at position 5 of the bid side. When processing this

message, the client should shift the entry that was previously at this position, as well as all positions below it by

one. This results in the client’s Order Depth order book looking as follows:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 3 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

7 30 7 104

Page 65 of 74

 Change – Change of an entry’s volume

The value “1 = Change” for field “279 = MDUpdateAction” signals a change to an order’s volume. Note that this is

only used when the order’s volume is decreased, as an increase in volume could potentially change the order’s

position and as such would be disseminated by a “3 = Delete” instruction, followed by a “0 = New” instruction.

Consider the following initial state for the client’s Order Depth order book:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 3 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

7 30 7 104

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 3 = Order Depth

279 MDUpdateAction 1 = Change

55 Symbol Example Instrument

269 MDEntryType 1 = Offer

270 MDEntryPx 80

271 MDEntrySize 2

290 MDEntryPositionNo 3

37 OrderID 109

The message above indicates a change in volume at position 3 of the offer side. This results in the client’s Order

Depth order book looking as follows:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 2 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

7 30 7 104

Page 66 of 74

 Delete – Entry deletion from the bottom of the book

Consider the following initial state for the client’s Order Depth order book:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 6 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

7 30 7 104

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 3 = Order Depth

279 MDUpdateAction 2 = Delete

55 Symbol Example Instrument

269 MDEntryType 0 = Bid

270 MDEntryPx 30

271 MDEntrySize 7

290 MDEntryPositionNo 7

37 OrderID 104

The message above indicates the deletion of the entry at position 7 of the bid side. This results in the client’s Order

Depth order book looking as follows:

Page 67 of 74

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 6 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

7 - - -

↓

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 6 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

 Delete – Entry deletion, causing a shift

Consider the following initial state for the client’s Order Depth order book:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 6 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

The following message is sent:

Field Value

35 MsgType X = MarketDataIncrementalRefresh

1021 MDBookType 3 = Order Depth

279 MDUpdateAction 2 = Delete

55 Symbol Example Instrument

269 MDEntryType 1 = Offer

270 MDEntryPx 90

271 MDEntrySize 4

290 MDEntryPositionNo 4

37 OrderID 103

Page 68 of 74

The message above indicates a deletion of the entry at position 4 of the offer side. When processing this message,

the client should remove the entry and shift all entries below up by one position. In this example levels 5 and 6

are shifted up by one level. This results in the client’s Order Depth order book looking as follows:

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 6 109

4 40 4 101 4 90 4 103

5 40 3 122 5 90 5 120

6 30 1 100 6 90 3 121

↓

Bid Offer

Position Price Volume Order ID Position Price Volume Order ID

1 50 5 105 1 70 4 110

2 50 3 112 2 80 2 102

3 50 2 117 3 80 6 109

4 40 4 101 4 90 5 120

5 40 3 122 5 90 3 121

6 30 1 100

8.6. Order Books in Snapshots

The Snapshots received in the various types of multicast groups contain all the required information to construct

the order books for each instrument.

The Snapshot messages follow the same format as the Incremental messages described in the previous sections,

with the following differences:

• The field “35 = MsgType” contains the value “W = MarketDataSnapshotFullRefresh”.

• The field “279 = MDUpdateAction” is absent, all messages are treated as if the value was “0 = New”.

• An “Empty Book” message is contained in Snapshots for instruments with an empty book of that type.

By applying the same methods described in the previous sections and taking into considerations these differences,

a client can construct the instrument’s initial order books by utilizing the snapshots and keep them up to date by

applying the incremental feeds.

Page 69 of 74

9. Market Data Guidelines

This section contains useful information related to the handling of various types of market data received via

Incremental Refresh messages.

9.1. Handling Auction Prices

The following procedure describes the handling of an instrument’s auction prices via Incremental Refresh

messages:

1. An instrument enters an auction/pre-call phase. An “f = SecurityStatus” message with field

“625=TradingSessionSubID” having value “102 = Pre-Call (Auction)” will be sent.

2. For the duration of the auction, “X = MarketDataIncrementalRefresh” messages with one repeating group

with field “269=MDEntryType” having value “v = Projected Auction Price” will be sent that contain a

projection of the auction price. These messages have field “279=MDUpdateAction” having value “0 =

New” for the first message and “1 = Change” for all subsequent updates.

3. Once the auction concludes, an “f = SecurityStatus” message with field “625=TradingSessionSubID” having

value “2 = Opening (Auction Price is calculated)” will be sent.

4. Subsequently, an “X = MarketDataIncrementalRefresh” message with two repeating groups will be sent:

a. The first repeating group with field “269=MDEntryType” having value “v = Projected Auction

Price” and field “279=MDUpdateAction” having value “2 = Delete” will be sent to signify that the

auction phase has ended and therefore the projected price should be discarded.

b. The second repeating group with field “269=MDEntryType” having value “w = Auction Price” and

field “279=MDUpdateAction” having value “0 = New” will be sent containing the actual auction

price.

5. This process is repeated for all auctions during the trading day, including the opening and closing auctions.

If a price for another auction was sent previously, the first projected price message (described in step 2)

will contain an additional repeating group at the start with field “269=MDEntryType” having value “w =

Auction Price” and field “279=MDUpdateAction” having value “2 = Delete” to signify that a new auction

pre-call phase is starting, and as such the previous auction's price should be discarded.

Page 70 of 74

9.2. Handling Closing Price

The following procedure describes the handling of an instrument’s closing price via Incremental Refresh messages:

1. An instrument enters the closing auction (pre-call) phase. An “f = SecurityStatus” message with field

“625=TradingSessionSubID” having value “102 = Pre-Call (Auction)” will be sent.

2. For the duration of the auction, “X = MarketDataIncrementalRefresh” messages with one repeating group

with field “269=MDEntryType” having value “ u = Projected Closing Price” will be sent that contain a

projection of the closing price. These messages have field “279=MDUpdateAction” having value “0 = New”

for the first message and “1 = Change” for all subsequent updates.

3. Once the closing auction concludes, an “f = SecurityStatus” message with field “625=TradingSessionSubID”

having value “2 = Opening (Auction Price is calculated)” will be sent.

4. Subsequently, an “X = MarketDataIncrementalRefresh” message two repeating groups will be sent:

a. The first repeating group with field “269=MDEntryType” having value “ u = Projected Closing

Price” and field “279=MDUpdateAction” having value “2 = Delete” will be sent to signify that the

auction phase has ended and therefore the projected closing price should be discarded.

b. The second repeating group with field “269=MDEntryType” having value “ 5 = Closing price” and

field “279=MDUpdateAction” having value “0 = New” will be sent containing the actual closing

price.

Note: An instrument’s closing price is not necessarily equal to its closing auction price, thus projections and prices

for both the closing auction and the closing price itself are sent.

9.3. Bond Volumes

All volume/size fields transmitted by the MDFS for bond instruments (field “20011 = ATHEXSecurityCategory”

having the value “5 = Bond” contain the “raw” volume/size, i.e. it is not pre-multiplied by the bond’s Nominal

Value/Contract Size.

If a client needs these volumes/sizes to be multiplied by the bond’s Nominal Value/Contract Size this must be

applied by the client, by utilizing the “231 = ContractMultiplier” field included in “Start of Day Price” messages for

bonds in the appropriate “General” type groups. The client may multiple any transmitted volume/size by the value

of this field in order to get the desired format.

9.4. APA OTC Trade Reports

The MDFS transmits APA OTC pre-trade and post-trade reports submitted to the exchange in specialized Groups.

Note that all incremental APA OTC messages transmitted via these groups will always have the field “279 =

MDUpdateAction” with the value “0 = New”, even when the message contains an amended or cancelled trade

Page 71 of 74

report. The field “20015 = ATHEXAPAReportStatus” included in these messages must be used instead in order to

determine the status (New, Amend, Cancel) of a trade report.

This is done because APA amendments/cancellations may be submitted to the exchange for trade reports that

were not initially submitted on the same day, and would therefore not be available via the MDFS that day. This

results in inability to use the field “279 = MDUpdateAction” to indicate amendments/cancellations as transmitting

a trade report with field “279 = MDUpdateAction” having with value “1 = Change”/”2 = Delete” without having

transmitted the original trade report with “279 = MDUpdateAction” with the value “0 = New” first, would break

the semantics of the FIX protocol’s “279 = MDUpdateAction” field.

9.5. MiFID II / MiFIR Review

The data feed provided by MDFS is compliant with the current RTS 1 & RTS 2 MiFID II / MiFIR regulations. MDFS

follows the Market Model Typology (MMT) that is maintained by the FIX Trading community. The currently

supported MMT version is 5.0 (11-Nov-2025a revision).

Some of the information required by RTS 1/RTS 2, such as ISIN, Price Currency, Price Notation & Quantity

Currency, is available via ATHEX’s Reference Data Service (RDS).

https://www.fixtrading.org/mmt/
https://portal.athexgroup.gr/rds

Page 72 of 74

10. Appendix A

10.1. Comparison With Legacy IDS Service (IOCP)

The MDFS is intended to completely replace the legacy IDS Service (IOCP).

The main differences between the two systems are:

1. The way they approach the dissemination of the market data originating from the trading platform.

The IDS Service is at its core a translation of internal messages generated by the trading platform to the

proprietary IDS format messages, more tailored to fit the needs of the clients (exchange members & data

vendors). The client has the option to request retransmission of previously disseminated data in the exact

form it was previously transmitted as.`

In contrast the MDFS is focused on providing fast, up-to-date information on the current state of all the

instruments being traded in the trading platform and on keeping the various order books current. The

messaging protocol is no longer proprietary, but the industry standard FIX / FAST protocol is used.

2. The incremental / snapshot paradigm.

The IDS service would send redundant and duplicate information on many occasions, as a result of not

following an incremental update approach. Messages would contain information that had already been

transmitted previously, when only a small subset of fields had changed. Clients would also need to have

received the entirety of the market data messages generated during a trading session in order to be up

to date with the current state of the session.

The MDFS by following the incremental update / snapshot approach can minimize the sending of

redundant information and improve the efficiency of the data transmission. In addition, by providing

snapshots, the MDFS offers clients the option to get the current state of the trading session in a fast and

efficient manner, without having to receive and process any past data they may not be interested in.

3. The networking and architectural paradigms they employ.

The IDS Service uses TCP networking for all communication with the client, this necessitates the existence

of a session protocol (implemented through the IOCP’s Control channel) in addition to the data

transmission channels. This provides reliable transmission but comes with considerable overhead, with

message retransmissions further impacting performance.

The MDFS offers both TCP/IP and UDP multicast as an option for clients, which can utilize each protocol

in accordance with their needs.

Page 73 of 74

The MDFS’ UDP multicast service when combined with FAST message encoding, results in much lower

latency and bandwidth usage. Another benefit of this approach is the lack of a need for a session protocol

as all authentication / authorization is done at the network level, which simultaneously allows for more

granular access to different feed types. It does come with some inherent unreliability due to the nature

of the UDP network protocol, but the MDFS’ architecture has multiple ways to combat this such as the

concurrent A & B Sources, the snapshot recovery mechanism and the TCP/IP retransmission service.

The MDFS’ TCP/IP service can be utilized by clients that favor lower implementation costs, simpler

networking infrastructure and the option to access the service over the internet.

4. The timestamps format they use.

The MDFS follows the FIX Protocol standard of sending all timestamps in UDP and YYYYMMDD-

HH:MM:SS.ssssss format. This is in contrast to the legacy IDS service which sent all timestamps in local

time and YYYYMMDDHHMMSSssssss format.

Those differences result in the MDFS being a much more modern and performant service, that improves the way

clients access the exchange’s market data feed and potentially reduces costs by providing data in an established

and widely used format.

Page 74 of 74

10.2. FAST Template XML Example

The following FAST Template is an example of the format that is used by MDFS to encode & decode FIX messages.

An XML file with templates for all of MDFS’ message types is provided.

<template name="ExampleMessage_34" id="34">
 <string name="MsgType" id="35">
 <constant value="W"/>
 </string>
 <uInt32 name="MDBookType" id="1021" presence="optional">
 <default />
 </uInt32>
 <string name="Symbol" id="55" presence="optional">
 <default/>
 </string>
 <sequence name="MDTestGroup" presence="optional">
 <length name="NoMDEntries" id="268">
 <default/>
 </length>
 <uInt32 name="MDPriceLevel" id="1023" presence="optional">
 <default/>
 </uInt32>
 <decimal name="MDEntrySize" id="271" presence="optional">
 <default/>
 </decimal>
 <decimal name="MDEntryPx" id="270" presence="optional">
 <default/>
 </decimal>
 </sequence>
</template>

	Revision History
	Table of Contents
	Table of Figures
	1. Introduction
	2. Architecture Overview
	2.1. Incremental Feed Approach
	2.2. Market Data Groups
	2.3. UDP Multicast Service
	2.4. TCP/IP Service

	3. General Guidelines
	3.1. Handling Incremental & Snapshot Traffic
	3.2. Application Sequence Control
	3.3. Heartbeat Messages
	3.4. Detecting Gaps
	3.5. Snapshot Cycles
	3.6. Updating the Order Book
	3.7. Identifying Duplicate Messages

	4. System Recovery Procedure
	4.1. Identifying Rollbacks
	4.2. Handling Rollbacks
	4.3. Handling Multiple Rollbacks

	5. TCP/IP Service
	5.1. Logon Procedure
	5.2. Updating the Password
	5.3. Sending a Request
	5.3.1. Request Acknowledgement
	5.3.2. Request Rejection (Session-Level validation error)
	5.3.3. Message Encoding

	5.4. FAST Encoded Message Encapsulation
	5.5. Subscribe Request
	5.6. Unsubscribe Request
	5.7. Retransmission Request
	5.7.1. Retransmission Request Report

	5.8. Snapshot Request
	5.8.1. Snapshot Request Report

	5.9. Disconnecting from the Service
	5.10. Heartbeat Messages
	5.11. Differentiating Between Incremental / Snapshots / Retransmissions
	5.12. Initial Connection Procedure
	5.13. Recovery Procedure
	5.14. TCP/IP Service Examples
	5.14.1. Initial Connection Procedure using TCP/IP Snapshot
	5.14.2. Initial Connection Procedure using TCP/IP Retransmission
	5.14.3. Different Heartbeat Types
	5.14.4. Multiple Market Data Groups via a Single FIX Session
	5.14.5. Multiple Traffic Types via a Single FIX Session

	6. UDP Multicast Service
	6.1. Handling Data Feeds on Sources A & B
	6.2. Handling Gaps in Message Sequence Numbers
	6.3. Differentiating Between Incremental / Snapshots / Retransmissions
	6.4. Initial Connection Procedure
	6.5. Recovery Procedure
	6.6. Multicast Service Examples
	6.6.1. Initial Connection Procedure using UDP Multicast Snapshot
	6.6.2. Initial Connection Procedure using TCP/IP Snapshot
	6.6.3. Initial Connection Procedure using TCP/IP Retransmission

	7. FAST Message Encoding
	7.1. Template Versioning
	7.2. Packet Structure
	7.3. Data Types
	7.4. Templates & Implicit Tagging
	7.5. Mandatory and Optional Fields
	7.6. Field Operators
	7.7. Presence Map (PMAP)
	7.8. Stop Bit Encoding
	7.9. Binary Encoding
	7.10. Decoding Overview
	7.11. Decoding Example
	7.12. Partial Decoding

	8. Order Book Handling
	8.1. Market/Stop/ATO/ATC orders
	8.1.1. Order Depth Book
	8.1.2. Top of Book/Price Depth Book

	8.2. Empty Book
	8.3. Top of Book
	8.3.1. New – Addition to an empty side
	8.3.2. Change – Change of volume / no. of orders
	8.3.3. Delete – A side becomes empty

	8.4. Price Depth Book
	8.4.1. New – Level insertion at the bottom of the book
	8.4.2. New – Level insertion, causing a shift
	8.4.3. New – Level insertion, causing the deletion of the last level
	8.4.4. Change – Change of a level’s volume / no. of orders
	8.4.5. Delete – Level deletion from the bottom of the book
	8.4.6. Delete – Level deletion, causing a shift

	8.5. Order Depth Book
	8.5.1. New – Entry Insertion at the bottom of the book
	8.5.2. New – Entry insertion, causing a shift
	8.5.3. Change – Change of an entry’s volume
	8.5.4. Delete – Entry deletion from the bottom of the book
	8.5.5. Delete – Entry deletion, causing a shift

	8.6. Order Books in Snapshots

	9. Market Data Guidelines
	9.1. Handling Auction Prices
	9.2. Handling Closing Price
	9.3. Bond Volumes
	9.4. APA OTC Trade Reports
	9.5. MiFID II / MiFIR Review

	10. Appendix A
	10.1. Comparison With Legacy IDS Service (IOCP)
	10.2. FAST Template XML Example

